Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory

Stefan Kurth

1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain
2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu
Collaborators:

- G. Stefanucci, Univ. Tor Vergata, Rome, Italy
- E. Khosravi and E.K.U. Gross, MPI Halle, Germany
- C. Verdozzi, Univ. Lund, Sweden
Outline

- Time-dependent density functional theory for transport
- Derivative discontinuity and time-dependent picture of Coulomb blockade
- Summary
transport is an inherent non-equilibrium phenomenon
steady state typically achieved at the end of an evolution process
can describe TD phenomena: transients, TD bias, external TD fields, ...
method: time-dependent DFT: in principle exact
TDDFT for transport

Outline
- Time-Dependent Density Functional Theory for Transport
 - Coulomb blockade and the role of the derivative discontinuity
 - Summary

TDDFT for transport

A simple impurity model for transport
(Static) DFT for the Hubbard model

TD Kohn-Sham equation for orbitals

\[
[i \partial_t - \hat{H}(t)] \psi_k(t) = 0
\]

Hamiltonian of extended system L-C-R, no direct hopping between left and right leads

\[
\hat{H}(t) = \begin{pmatrix}
H_{LL}(t) & H_{LC} & 0 \\
H_{CL} & H_{CC}(t) & H_{CR} \\
0 & H_{RC} & H_{RR}(t)
\end{pmatrix}
\]
TDDFT for transport

downfolding of equation of motion for extended orbitals (in region L-C-R) onto equation for orbital projected onto central region only

Equation of motion for orbital projected on central region

\[
\begin{align*}
[i \partial_t - \hat{H}_{CC}(t)]\psi_{k,C}(t) = & \int_0^t dt' \Sigma^{R}_{emb}(t, t')\psi_{k,C}(t') + \sum_{\alpha} H_{C}\alpha g^{R}_{\alpha}(t, 0)\psi_{k,\alpha}(0)
\end{align*}
\]

where (retarded) embedding self energy Σ^{R}_{emb} and (retarded) Green function g^{R}_{α} for isolated lead α describe coupling to leads

details in:
Simple impurity model for transport

One interacting impurity, Hubbard-like on-site interaction U, non-interacting leads, hopping V in leads and hopping V_{Link} from leads to impurity, on-site energy ε_0 at impurity

At time $t = 0$, switch on bias W_α in lead α and follow time evolution

In TDDFT: need exchange-correlation potential
(Static) DFT for the Hubbard model

N.A. Lima et al (PRL 90, 146402 (2003); EPL 60, 601 (2002)):
parametrize total energy per site based on exact, Bethe ansatz (BA), solution of uniform Hubbard model with density \(n \):

\[
e^{BA}(n, U) = -\frac{2|V|\beta}{\pi} \sin \left(\frac{\pi n}{\beta} \right)
\]

with parameter \(\beta(U) \) depending on interaction strength \(U \)
one can extract xc energy \(e^{BA}_{xc}(n, U) \) from this parametrization
(Static) DFT for the Hubbard model

derivative discontinuity at \(n = 1 \)

\[
\Delta_{xc} = \lim_{\epsilon \to 0^+} \left[v_{xc}^{BALDA}(n = 1 + \epsilon) - v_{xc}^{BALDA}(n = 1 - \epsilon) \right] \\
= U - 4|V| \cos \left(\frac{\pi}{\beta(U)} \right)
\]

local approximation:

for non-uniform Hubbard models, i.e., non-constant on-site energies or even different interactions at each site:

use \(e_{xc}^{BA}(n_i, U_i) \) as xc energy at site \(i \) (Bethe ansatz LDA, BALDA)

adiabatic approximation:

time-dependence of TDDFT xc potential at site \(i \) through

\[
v_{xc}(i, t) = v_{xc}^{BALDA}(n_i(t))
\]
TD density and KS potential in presence of discontinuity

Fermi and on-site energy $\varepsilon_F = 1.5|V|$, $\varepsilon_0 = 2|V|$, right bias $W_R = 0$, interaction $U = 2|V|$, hopping to impurity $V_{\text{Link}} = 0.3V$

density shows small oscillations around integer occupation

for some parameters: system does not evolve towards a steady but towards a dynamical state

TD KS potential: series of almost rectangular potential steps
Self-consistency condition for steady state density

Landauer approach:
assume there exists steady state with density n^∞ at impurity
$
\rightarrow$ self-consistency condition for n^∞

$$
n^\infty = 2 \sum_{\alpha=L,R} \int_{-\infty}^{\varepsilon_f + W_\alpha} \frac{d\omega}{2\pi} \frac{\Gamma(\omega - W_\alpha)}{\Gamma(\omega - W_\alpha)} |G(\omega)|^2
$$

$$
G(\omega) = [\omega - v_{KS}(n^\infty) - \Sigma(\omega - W_L) - \Sigma(\omega - W_R)]^{-1}
$$

$$
v_{KS}(n) = \varepsilon_0 + \frac{1}{2} Un + v_{xc}^{BALDA}(n)
$$
Self-consistency condition for steady state density

l.h.s. and r.h.s. of self-consistency condition for n^∞

![Graph showing the self-consistency condition for steady state density](image)

no solution for steady state density for some values of the bias, exactly those values for which TD approach gives dynamical state!!

to understand physics of this regime \rightarrow smoothen xc discontinuity
Smoothened discontinuity: steady-state density vs. bias

steady-state density as function of bias for different hoppings from lead to impurity

step structure for small V_{Link} width of step: U

→ Coulomb blockade

note: crucial role of discontinuity

the role of the discontinuity in steady-state transport has also been discussed in C. Toher et al, PRL 95, 146402 (2005)
Summary

- TDDFT approach to transport
- Derivative discontinuity in transport crucial to describe Coulomb blockade
- absence of steady state in CB regime
 instead: TD picture of CB as dynamical state of charging and discharging of weakly coupled system

Reference:
see also: C.A. Ullrich, Physics Viewpoint 3, 47 (2010)