The exact Hohenberg-Kohn functional for a lattice model — Tanja Dimitrov1, Heiko Appel1, Angel Rubio1,2 — Fritz-Haber-Institut der MPG, Berlin, Germany — NanoBio Spectroscopy group and ETSF, Universidad del Pais Vasco, San Sebastián, Spain

Standard local exchange-correlation and semi-local functionals in ground-state density functional theory are known for their shortcomings in describing correct charge transfer, dissociation energies of molecular ions, and barriers of chemical reactions [1,2].

To understand the failures of approximate functionals and to gain insight into the behavior of the exact functional, we investigate the exact solution of the many-body Schrödinger equation for a lattice model. Using exact diagonalization, we explicitly construct the exact Hohenberg-Kohn functional and the mapping from densities to wavefunctions. Besides the normal inter-system derivative discontinuity widely discussed in the density-functional theory community [3], we observe a new feature of the exact functional in the low-density limit. This "intra-system derivative discontinuity" resembles the inter-system derivative discontinuity, but is within the system.

The description of many physical phenomena linked to charge-transfer processes (both in the static and dynamical regimes) require a proper account of this "intra-system derivative discontinuity".

Part: CPP
Type: Poster; Talk
Topic: Electronic and Optical Properties
Email: dimitrov@fhi-berlin.mpg.de