Real-time propagation of coupled Maxwell-Schrödinger systems — •Rene Jestädt1, Heiko Appel1Angel Rubio2 —
1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany — 2Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. de Física de Materiales, Universidad del País Vasco UPV/EHU, San Sebastián, Spain

Since the Maxwell equations have a symplectic structure and are first order in time, it is possible to transform them, by using the Riemann-Silberstein vector \cite{1}, into a matrix spinor representation similar to the Dirac equation \cite{2}. Such a spinor representation is advantageous for a coupled propagation of Maxwell's and Schrödinger's equations. In our present work we use unitary propagation techniques developed for the Schrödinger equation \cite{3} in order to propagate the Riemann-Silberstein vector with perfectly matched layer boundary condition in two dimensions with arbitrary geometry and matter distributions. Using the result of the classical time evolution of the electromagnetic field, we quantize the field and consider a dipole-coupling to a single atom.

\cite{1} L. Silberstein, Ann. d. Phys. 327 (1907), 579-586.
\cite{2} S. Ahmed Khan, Physica Scripta. 71 (2005), 440-442.

Part: CPP
Type: Vortrag; Talk
Topic: Quantum optics
Email: jestaedt@fhi-berlin.mpg.de