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ABINIT [http://www.abinit.org] allows one to study, from first-principles, systems made of electrons
and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional
Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge
density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric,
thermodynamical, mechanical, or electronic properties, at different levels of approximation.
The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to
scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad
overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in
more details the recent, advanced, developments of ABINIT, with adequate references to the underlying
theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials.

Program summary

Program title: ABINIT
Catalogue identifier: AEEU_v1_0
Distribution format: tar.gz
Journal reference: Comput. Phys. Comm.
Programming language: Fortran95, PERL scripts, Python scripts
Computer: All systems with a Fortran95 compiler
Operating system: All systems with a Fortran95 compiler

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

* Corresponding author at: Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
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Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one
thousand processors.
RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file.
Classification: 7.3, 7.8
External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6]
Nature of problem: This package has the purpose of computing accurately material and nanostructure
properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric
properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear
couplings, electronic and vibrational lifetimes, etc.
Solution method: Software application based on Density-Functional Theory and Many-Body Perturbation
Theory, pseudopotentials, with planewaves, Projector-Augmented Waves (PAW) or wavelets as basis
functions.
Running time: From less than one second for the simplest tests, to several weeks. The vast majority of
the >600 provided tests run in less than 30 seconds.
References:

[1] http://inac.cea.fr/LSim/BigDFT.
[2] http://etsf.eu/index.php?page=standardization.
[3] http://www.tddft.org/programs/octopus/wiki/index.php/Libxc.
[4] http://www.unidata.ucar.edu/software/netcdf.
[5] http://en.wikipedia.org/wiki/MessagePassingInterface.
[6] http://www.wannier.org.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics and electromagnetism are widely perceived as leading to a “first-principles” approach to materials and nanosys-
tems: if the needed software applications and corresponding hardware were available, their properties could be obtained without any
adjustable parameter (nuclei characteristics being given). Still, such “first-principles” equations (e.g. N-body Schrödinger equation) are too
complex to be handled directly. Indeed, fundamental quantities, like the wavefunctions for N particles, cannot be represented faithfully on
the hardware that is available nowadays, for N bigger than about a dozen.

Different methodologies to address this problem have been proposed. We will focus on the Density-Functional Theory (DFT), proposed
in 1964–65 by Hohenberg, and Kohn [1] and Kohn and Sham [2] (KS), and the Many-Body Perturbation Theory, in particular the so-called
GW approximation (GWA) of L. Hedin [3], proposed in 1965. Both significantly reduce the complexity of the “first-principles” approach,
at the expense of some approximations. On the basis of such methodologies, in the eighties, it became clear that numerous properties of
materials, like total energies, electronic structure, and dynamical, dielectric, mechanical, magnetic, vibrational properties, can be obtained
with an accuracy that can be considered as truly predictive (e.g. a few percent on bond lengths, a fraction of an eV for electronic energies,
etc.). Many research groups implemented the DFT methodology, using different representations (planewaves, augmented waves, muffin-
tin orbitals, etc., see the comprehensive book by R.M. Martin [4]). However, it was hardly possible for one research group to gather the
expertise to address the whole range of accessible properties.

The ABINIT software project [5] started in 1997, with two basic ideas: (1) the needed expertise should be brought by different teams
working together; (2) taking as example the development of Linux, a “Free Software” licence should be at the heart of such a multi-team
effort.

The first publicly available version of ABINIT was released, under the GNU GPL [6] in December 2000. Since then, the developer com-
munity has grown from a few early contributors, to about fifty people. The user community counts more than one thousand individuals
worldwide. Because of its relatively large developer group, the computational capabilities of ABINIT cover a wide spectrum of properties,
that will be described in the present paper. Also, special care has been taken to insure the portability of the application (thanks to non-
regression tests) and to guide the user in the learning of ABINIT use. At present, the ABINIT package (31.5 MB), includes the main software
application and post-processing tools (about 1200 files written in F90, 472,000 lines), automatic tests (657 input files), the corresponding
documentation, as well as a complete build system relying on the autotools. The ABINIT project has already been described in papers
published in 2002 (Ref. [7]) and 2005 (Ref. [8]).

The present paper will start (Section 2) with an overview of ABINIT (user’s point of view): a list of capabilities of ABINIT, with explicit
reference to internal documentation, some (very limited) information on the structure of its main executable, the structure of the package,
how to build ABINIT and how to run ABINIT. Then, Sections 3–7 will give a detailed presentation of features that have appeared in the
last four years (that complements the information already contained in Refs. [7,8]). Successively:

– Section 3: Ground-state properties based on Projector-Augmented Waves.
– Section 4: Other ground-state properties.
– Section 5: Linear and non-linear responses.
– Section 6: Excited states.
– Section 7: Speed-up of the calculation and convergence issues.

In these sections, a brief theoretical account will be followed by adequate references to published literature, as well as to internal docu-
mentation:
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(1) Web pages containing the description of input variables, with entry point, in the package, doc/input_variables/keyhr.html;
(2) Example input files (and corresponding output reference files), in the various tests/*/Input/ (and tests/*/Refs/) subdirec-

tories.

The comprehensive list of the capabilities of ABINIT, in Section 2.1, will include those that have been described in the early accounts
of ABINIT. For such capabilities, there often exists an additional internal source of documentation, in the form of specific tutorials, in
the doc/tutorial/ directory. The underlying theory will often be found in the published literature, especially in the above-mentioned
book by R.M. Martin [4]. As the citations to this “Electronic Structure” book (or chapter thereof) will be numerous, we will use the specific
abbreviation RM_ES as a shortcut.

Throughout the paper, we refer to version 5.7 of ABINIT, released in January 2009. At the time of writing, a release candidate for ABINIT
5.8 exists, while the planning for ABINIT 6.0 is in preparation. The reference to these forthcoming versions will be kept to a minimum.
The reader should however realize that some aspects of the present paper might quickly become obsolete, especially concerning missing
capabilities of ABINIT.

The file addresses will always refer to the root of the package, when uncompressed. This location will be reached by issuing the
following commands, in the directory where the abinit-5.7.4.tar.gz file resides:

gunzip abinit-5.7.4.tar.gz
tar -xvf abinit-5.7.4.tar
cd abinit-5.7.4

2. Overview of ABINIT

ABINIT is now presented from the user point of view. Accordingly, the list of capabilities will be rather exhaustive, while the description
of the F90 sources will be quite short. In a similar spirit, for the parts of the package that are relevant for the users, the structure of
directories will be explained in some detail, while other parts of the package, like the build system, will be nearly neglected. Two final
subsections explain how to build and run ABINIT.

2.1. Capabilities of ABINIT

The standard representation of DFT and GWA quantities within ABINIT relies on planewaves, see Chapters 12 and 13 of RM_ES. An
alternative representation is provided by a set of wavelets, as provided by the BigDFT library, see Section 4.2. While very promising,
the use of wavelets is not yet possible within the GWA, or for the direct computation of responses to perturbations. Periodic boundary
conditions are implied when planewaves are used. In this case, systems that are not inherently periodic, like molecules, nanowires, or
surfaces have to be embedded in the appropriate supercell, see Chapter 13 of RM_ES. This is at variance with the case of wavelets, where
the available ABINIT/BIGDFT implementation relies on open boundary conditions.

Valence and core electrons are treated on different footings: the core electrons are frozen, and either replaced by norm-conserving
pseudopotentials, or treated by the augmentation of planewaves by projectors (Projector-Augmented Wave method – PAW). The norm-
conserving technology has been present for a long time in ABINIT, while the PAW methodology is more recent. The latter is described in
Section 3 of the present paper. For the basic theory of pseudopotentials and PAW, see Chapter 11 of RM_ES. It will be signaled whether
the different properties can be accessed with the PlaneWave + Norm Conserving Pseudopotential (PW + NCPP) framework, the Projector-
Augmented Wave framework (PAW) or even the wavelet (WVL) framework.

The treatment of the spin degree of freedom requires also some information. The easiest case for the implementation of a property
arises when the system is non-spin-polarized (NSP): an occupation factor of 2, representing two electrons per state, appears in several
DFT or GWA expressions, obtained from scalar wavefunctions. However, for many solids and molecules, there is a spontaneous imbalance
between the number of electrons in both spin channels (collinear spin case – COLL), or, even, the wavefunctions have to be treated
as spinors (in the presence of spin–orbit interaction, or non-collinear magnetism – SPINOR). Not all capabilities of ABINIT have been
implemented in the collinear case or spinor case, and this will be signaled. Explanations about the spin treatment can be found in
Chapters 8 and 10 of RM_ES.

We will present in separate tables the capabilities of ABINIT that arise from:

– a direct implementation of DFT (Table 1);
– an implementation of Density-Functional Perturbation Theory (Table 4), see Chapter 19 of RM_ES;
– an implementation of GWA (Table 5).

In Table 2, we list different levels of approximation implemented within DFT, complementing Table 1. In Table 3, we list capabilities
of ABINIT that are derived from the KS electronic structure, also complementing Table 1. As explained in Chapter 7 of RM_ES, the KS
electronic structure and the experimental quasi-particle electronic structure cannot directly linked to each other. However, scientists have
often derived properties of systems from the KS structure, as this approach is rather simple and fast from a computational point of view,
convenient, and often qualitatively meaningful. The direct computation of excitation energies from Time-Dependent Density-Functional
Theory, see Section 6.6, is also listed in Table 3. The specific techniques related to the speed of ABINIT will be presented in Table 6, be
these related to parallelism, or to speed-up of convergence or interpolation issues.

For each capability, we give the appropriate entry point. For the most basic properties, already present in ABINIT in 2005, Web-
formatted tutorials exist, in the doc/tutorial/ directory. This will be the preferred entry point mechanism, from which the
relevant input variables are introduced, with commented examples. For the capabilities developed between 2005 and 2009, Sec-
tions 3–7 of the present paper provide the best entry points, with appropriate reference to ABINIT input variables (entry point
doc/input_variables/keyhr.html), and example test cases. Finally, for some minor capabilities of ABINIT, neither a tutorial nor
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Table 1
List of capabilities of ABINIT, arising from basic DFT.

Capability Methodology and entry point

Total energy, charge density and
forces for finite systems
(molecules, clusters, etc.)

PW + NCPP (using a supercell): doc/tutorial/lesson_1.html
PAW (using a supercell): Section 3.1
WVL (open boundaries): Section 4.2
Open boundaries to treat the electrostatics for PW + NCPP and PAW: Section 4.3

Total energy, charge density and
forces for periodic insulating systems
(bulk solids, slabs, supercell, etc.)

PW + NCPP and PAW: doc/tutorial/lesson_3.html, and, for PAW, Section 3.1

Total energy, charge density and
forces for periodic metallic systems
(bulk solids, slabs, supercell, etc.)

PW + NCPP and PAW: doc/tutorial/lesson_4.html and, for PAW, Section 3.1

Geometry optimization or molecular
dynamics

PW + NCPP, PAW and WVL: doc/tutorial/lesson_1.html and ionmov input variable
(Broyden algorithm, viscous damping, Nosé thermostat, Langevin dynamics, etc.)

Stresses and primitive cell
optimization

PW + NCPP, and PAW: doc/tutorial/lesson_3.html, with ionmov and optcell input variables
(full optimization, uniform scaling, fixed volume optimization, fixed stress optimization, etc.)

Total energy, charge density, forces
and molecular dynamics for
high-temperature plasmas

PW + NCPP (local potentials only): Section 4.4

Macroscopic polarization (Berry
phase)

PW + NCPP: doc/tutorial/lesson_ffield.html,
PAW: Section 3.4

Periodic systems under finite electric
field (Berry phase)

PW + NCPP: doc/tutorial/lesson_ffield.html

Collinear magnetization PW + NCPP, PAW and WVL: doc/tutorial/lesson_spin.html
Non-collinear magnetization PW + NCPP, PAW: doc/tutorial/lesson_spin.html
Antiferromagnetism PW + NCPP, PAW and WVL: doc/tutorial/lesson_spin.html
Electric field gradients PAW: Section 3.6
Mössbauer Isomer Shift PAW: Section 3.6
Fermi contact interaction PAW: Section 3.6
Positron lifetime PW + NCPP, PAW: Section 4.1
Bader partitioning of density PW + NCPP: doc/users/aim_help.html
Hirshfeld charges PW + NCPP: doc/users/cut3d_help.html

See text for the abbreviations. By default, the applicability is NSP, COLL and SPINOR for PW + NCPP, and NSP, COLL for WVL (spinors are not yet implemented in WVL).

Table 2
List of approximations available with DFT.

DFT level of approximation Availability and entry point

Local (Spin) Density Approximation (LDA) PW + NCC, PAW, and WVL: 9 native ABINIT functionals, ixc input variable; 16 Libxc functionals, Section 4.6

Generalized Gradient Approximation (GGA) PW + NCC, PAW, and WVL: 10 native ABINIT functionals, ixc input variable; 41 Libxc functionals, Section 4.6
(23 functionals for exchange, 8 functionals for correlation, 10 functionals for combined exchange and correlation)

LDA or GGA + U PAW: Section 3.2
Hybrid functional PAW: local PBE0, Section 3.3

See Chapter 8 of RM_ES.

Table 3
List of basic capabilities of ABINIT, arising from the knowledge of Kohn–Sham (KS) electronic structure and from Time-Dependent Density-Functional Theory.

Capability Methodology and entry point

KS electronic structure PW + NCPP, PAW and WVL: doc/tutorial/lesson_1.html and doc/tutorial/lesson_3.html
See Chapter 7 of RM_ES for the meaning of KS structure.

KS electronic Density of States PW + NCPP: doc/tutorial/lesson_3.html
PAW: Section 3.1

Atomic and angular momentum
resolved KS electronic Density
of States

PW + NCPP, PAW: doc/tutorial/lesson_3.html
PAW: Section 3.1

Energy-resolved charge density, for
Tersoff–Hamann approach to STM

PW + NCPP, PAW: prtstm input variable

Frequency-dependent optical and
conductivity response

PW + NCPP: doc/users/conducti_manual.pdf or doc/tutorial/lesson_optic.html
PAW: Section 3.5

Frequency-resolved non-linear optical
response

PW + NCPP: doc/tutorial/lesson_optic.html

Wannier functions PW + NCPP: doc/tutorial/lesson_wannier90.html

Excitation energies from Time-Dependent
Density-Functional Theory

PW + NCPP, for finite systems only, no SPINOR: doc/tutorial/lesson_tddft.html and Section 6.6

See text for the abbreviations. By default, the applicability is NSP, COLL and SPINOR for PW + NCPP, and NSP, COLL for WVL (spinors are not yet implemented in WVL).
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Table 4
List of basic capabilities of ABINIT, arising from Density-Functional Perturbation Theory (DFPT), in the PW + NCPP methodology.

Capability Applicability and entry point

Dynamical matrices, phonon frequencies and eigenvectors doc/tutorial/lesson_rf1.html (also available in a finite electric field)
Dielectric tensor doc/tutorial/lesson_rf1.html
Born effective charges doc/tutorial/lesson_rf1.html and doc/tutorial/lesson_ffield.html
Infra-red activity doc/tutorial/lesson_rf1.html
Raman scattering intensity (NSP only) Section 5.3 and doc/tutorial/lesson_nlo.html
Non-linear dielectric susceptibility Section 5.3 (NSP only) doc/tutorial/lesson_nlo.html
Electro-optic tensor (NSP only) Section 5.3 and doc/tutorial/lesson_nlo.html
Phonon density of states doc/tutorial/lesson_rf2.html
Vibrational internal energy, free energy, entropy, as a function of temperature doc/tutorial/lesson_rf2.html
Vibrational specific heat doc/tutorial/lesson_rf2.html
Atomic form factors (Debye–Waller factors) doc/tutorial/lesson_rf2.html
Electron–phonon coupling (not SPINOR) Section 5.1
Phonon lifetime due to scattering with electrons (not SPINOR) Section 5.1
Phonon-mediated superconductivity (not SPINOR) Section 5.1
Phonon-limited electric conductivity (not SPINOR) Section 5.1
Electron lifetime due to phonons (not SPINOR) Section 5.2
Temperature dependence of the electronic eigenenergies (including the gap) (not SPINOR) Section 5.2
Elastic tensor (not SPINOR) doc/tutorial/lesson_elastic.html
Piezoelectric tensor (not SPINOR) doc/tutorial/lesson_elastic.html
Thermal expansion From minimization of the total free energy, see Ref. [19]
Photoelasticity From finite-difference of dielectric tensor, see Ref. [20]

DFPT is not yet available in production within PAW in ABINITv5.7, but should be available in ABINITv6.0. No implementation of DFPT is yet started in WVL. By default, the
applicability is NSP, COLL and SPINOR.

Table 5
List of available methodologies within Many-Body Perturbation Theory.

Type of self-consistency Type of self-energy, and type of frequency
integration for dynamical correlations

G0 W0 ΣHF

GW0 (update of eigenenergies) ΣCOHSEX

G0 W ΣGW with 4 plasmon-pole models
SCqpGW ΣGW with contour deformation

ΣGW with analytical continuation
ΣGWΓ with 4 plasmon-pole models

See text for the abbreviations. By default, the applicability is NSP and COLL (spinors are not implemented), for PW + NCPP and PAW (no WVL). The entry points are Section 6,
and the tutorials doc/tutorial/lesson_gw1.html and doc/tutorial/lesson_gw2.html. SCqpGW stands for Self-Consistent quasi-particle GW approximation.

Table 6
Specific approaches to speed-up the calculations.

Framework Approaches Methodology and entry point

DFT Parallelism over wavevectors (k points) and spin PW + NCPP and PAW, doc/tutorial/lesson_parallelism.html
DFT Parallelism over bands WVL, Section 4.2
DFT Parallelism over FFT planes, bands, k points and spin PW + NCPP and PAW, Section 7.1
DFT Extrapolar speed-up of self-consistency Section 7.3
GWA Parallelism over wavevectors Section 7.2
GWA Parallelism over empty bands Section 7.2
GWA Extrapolar decrease of the number of empty bands Section 7.4
GWA Wannier interpolation of the quasi-particle band structure Section 6.5

See text for the abbreviations.

a relevant description in the present paper exist. In these cases, some other entry points from the package will be listed in the table,
together with possible reference to RM_ES.

In any case, for the ABINIT newcomer, it is not advised to jump immediately to the entry point that is closest to his/her research
concerns. This person should first spend some time reading the new user’s guide (doc/users/new_user_guide.html), as well as
lessons 1 to 4 of the tutorial (in doc/tutorial/, the files lesson_X.html with X being 1, 2, 3 or 4).

2.2. The main ABINIT program, and other main programs

The sources of the different F90 programs of the ABINIT package are present in the src/ directory. The corresponding top-level
routines have been gathered in the src/main/ subdirectory. One of these top-level routines, src/main/abinit.F90 drives all the
CPU-intensive computations needed for the capabilities mentioned in Section 2.1.

A detailed understanding of the structure of this main ABINIT program (referred to as abinit) is not required for the user to carry
out calculations. Moreover, the content of the output file of ABINIT is relatively self-contained. One aspect of the structure of the main
ABINIT program is however apparent from the user’s perspective, and has been sketched in Fig. 1, namely, the presence of “processing
units”, attacked with a “driver”.
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Fig. 1. Structure of the main ABINIT program, from the user’s perspective.

Indeed, in the input file, the user can define different “datasets”, thanks to the input variable ndtset, that abinit will treat in turn,
sequentially. The output of one dataset can be taken as output of the following datasets. The results of each dataset calculation are listed
sequentially in the output file. The processing units correspond broadly to the different theoretical frameworks that have been presented
in Section 2.1.

Let us inspect the top-level abinit source file, src/main/abinit.F90, and locate the elements on the left-hand side of Fig. 1:

– The box “Parser” refers to the call to parsefile, and its subsequent analysis thanks to the calls to invars0, invars1m, invars2m
(the corresponding source files being parsefile.F90, invars0.F90, invars1m.F90, invars2m.F90, in the src/13iovars
directory);

– The box “Checks, prediction of memory needs” refers to the calls to chkinp, and chkvars (source files in the src/13iovars
directory);

– The box “DRIVER” refers to the call to driver (source file src/21drive/driver.F90);
– The box “Summary of results” refers to the call to outvars (source file src/13iovars/outvars.F90);
– The box “CPU/Wall clock time analysis” refers to the call to timana (source file src/21drive/timana.F90).

Of course, src/main/abinit.F90 accomplishes many more tasks, hidden to the user: initializations, file name handling, allocation of
memory, transfer of data between variables or between processors.

In the src/21driver/driver.F90 routine, one finds the elements present in the right-hand side of Fig. 1:

– The loop over the different datasets is driven by the line “do idtset=1,ndtset_alloc”;
– The box “Density, Forces, MD, TDDFT” refers to the call to gstate (source file src/21drive/gstate.F90);
– The box “Linear Responses within DFPT” refers to the call to respfn (source file src/18seqpar/respfn.F90);
– The box “Non-linear Responses within DFPT” refers to the call to nonlinear (source file src/21drive/nonlinear.F90);
– The box “GW Computation of band structure” refers to the calls to screening and sigma (source files screening.F90 and
sigma.F90 in src/18seqpar/).

In src/21driver/driver.F90, in addition to the above-mentioned elements (as well as initializations, copy of data, etc.), one finds
also calls to processing units that are not associated to any capability explained in the present paper. These units correspond to function-
alities that are not yet operational.

We will not proceed further with the description of the structure of the main abinit program, the inspection of the enormous
number of source routines being outside of the scope of this paper.

Other top-level routines of the src/main/ directory will lead to either post-processors of the main ABINIT program, or utilities to
manipulate the output files:

– anaddb is a code to perform the analysis of the DFPT output of abinit, whose use is explained in doc/tutorial/lesson_rf2.
html and doc/users/anaddb_help.html;

– optic is a code to compute frequency-dependent linear and non-linear optics properties, based on KS eigenvalues and eigenfunctions
from abinit, whose use is explained in doc/tutorial/lesson_optic.html and doc/users/optic_help.html;

– cut3d is a code to perform the analysis of the density and wavefunction files of abinit, whose use is explained in
doc/users/cut3d_help.html;

– aim is a code to perform the Bader analysis of the charge density from abinit, whose use is explained in doc/users/aim_help.
html;

– macroave is a code to perform the macroaverage of the charge density or potentials from abinit, whose use is exemplified in
tests/v4/t4X.in where X stands for 0 to 5. See also tests/v4/README;

– the other top-level routines in src/main/ correspond to utilities to manipulate different data files, whose usage is explained in the
relevant tutorial or help files.

Having described the top-level routines of the src/main/ directory, we now turn to the description of the overall structure of the
package.
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Fig. 2. Structure of the ABINIT package.

2.3. Structure of the package

ABINIT is made of 9 logical blocks, fully reflected in the structure of its source tree (see Fig. 2).
The core of ABINIT is composed of the src/ subtree, which contains all the Fortran source files of the package. The subdirectories of

src/ are organized hierarchically. The numbers in front of the directory names indicate the presence of dependencies on other directories
having a lower number.

The prerequisites are found in the prereqs/ subtree. They are external components to ABINIT. Their presence is required to make
sure that ABINIT can be built and used. At present this part contains the subset of BLAS and LAPACK routines ABINIT is calling in the
course of its execution.

The so-called “plug-ins”, found in the plugins/ subtree, are external components as well, but they are optional. Their build system
has been wrapped by the one of ABINIT, in order to facilitate their build and use within our package. They extend the capabilities of
ABINIT in various ways:

• BigDFT [9] uses wavelets to deal with systems made of thousands of atoms;
• NetCDF [10] and ETSF_IO [11] allow for a platform-independent exchange of data between different software packages (currently

supported by DP [12], EXC [13], and Yambo [14]);
• LibXC, from Octopus [18], provides a comprehensive, robust, and well-tested collection of exchange–correlation functionals;
• FoX [15] is able to read and write XML files from Fortran and will soon replace the currently supported XMLF90 [92], which it

supersedes;
• Wannier90 [16] makes it possible to perform quantum transport calculations using Maximally-Localized Wannier Functions (MLWF).

The test suite tests/ is a very important component of ABINIT. It is now made of more than 600 tests, allowing for the checking
of most of the package features, including the running in parallel and the plug-ins. The tests are organized in series. In addition to 5
built-in quick tests, there is one series for each major version of ABINIT (around 100 tests per series) and for each plug-in. Two other
series cover the basic and response-function tutorials, providing the ability to verify that they can actually be run and give correct results,
which is extremely useful when preparing hands-on sessions. The “fast” series is meant for quickly and roughly knowing whether the
binaries behave correctly, but is limited when it comes to pinpointing problems. The “cpu” series is used for benchmarks. The “physics”
series performs a production run and is not used much because of the resources it consumes. Last but not least, and contrary to all the
other series, “paral” provides 70 tests to make sure that the parallel version of ABINIT works fine.

The documentation is located in the doc/ subtree. It contains a lot of information for users, developers, and maintainers. Here we will
cover the first category only. The user documentation is threefold: generic information, help to build ABINIT, and help to run ABINIT.

The doc/theory/ subtree contains theoretical background on some of the main features of ABINIT. The ABINIT project and its
philosophy are described in doc/presentation/.

Most of the necessary information to build ABINIT can be found in doc/build/, containing a manual, in doc/config/, con-
taining a configuration template and examples, as well as in doc/install_notes/. It is also usually a good idea to consult the
KNOWN_PROBLEMS file at the top of the source tree before starting to build ABINIT.

The doc/users/ subtree stores the manuals for all binaries and some of the advanced features of ABINIT, a FAQ and some method-
ological help. The capabilities of the programs are described in doc/features/, while doc/release_notes/ makes a list of the
latest important news in the history of the package. Of utmost importance is the doc/tutorial/ subtree, in particular for beginners,
for all the useful information it contains.

Most of the ABINIT utilities, stored in the util/ subtree, are meant for developers and maintainers. A few of them are however of
interest to users. In particular, in util/users/, the ABINITInputMaker.py Python script can help beginners creating input files,
while ABINITBandStructureMaker.py will prove useful to get and plot band structures from an ABINIT calculation. Another script,
chkinabi.pl, looks for typos in input files. A few post-processing goodies can also be found in extras/.

Recently a project has been started to make parts of ABINIT directly usable by other software packages. This is what can be found
in the bindings/ subtree. A pilot test is currently being conducting with V_Sim, which is now able to parse ABINIT input files using
the parser of ABINIT. In the future, other parts may become available, like the symmetry finder or the reader of ABINIT file headers. The
feasibility of such projects is still being studied.
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Last but not least, the build system of ABINIT is located in the config/ subtree. It consists in a software layer which has been
developed on top of the GNU Autotools (Autoconf, Automake, Libtool) and becomes invisible once a source tarball has been made, so that
end-users do not have to care about anything related to it. See the Ψk Newsletter Highlight #90 (http://www.psi-k.org/newsletters/News_
90/Highlight_90.pdf) for a detailed description of the ABINIT build system.

2.4. How to build ABINIT

The build of ABINIT follows the well-established and ubiquitous procedure of Free Software packages:

mkdir <builddir>
cd <builddir>
../configure [options]
make
make check
make install

As one of the priorities of ABINIT is portability, the counterpart is that its configure script provides many options. The full list can be
obtained by typing “configure --help”. We will just cover here the most important ones.

All plug-ins, as well as a few other libraries (FFTW, PAPI, ScaLAPACK) can be customized through the use of 3 options:

• --enable-<package>: enable/disable support for the package;
• --with-<package>-includes: include flags to use at compile time;
• --with-<package>-libs: link flags to resolve symbols at link time.

For plug-ins, if the first option is used only, the version embedded in ABINIT will be built before the core sources. For the other ones, at
least the first and third options will have to be used. A noticeable exception is the case of BLAS and LAPACK, that we have grouped and
nicknamed “linalg”, which cannot be disabled and which will be systematically built if the third option is not used.

The most delicate options are the MPI-related ones, and most of the difficulties in dealing with them arise from that the sequential (abi-
nis) and parallel (abinip) binaries are built at once. The infinite possibilities in choosing the MPI implementation, its version, and where to
install it make the configuration more complicated and more difficult too. However, in many cases, the use of the --with-mpi-prefix
option solves all the problems, by giving the build system a location where to look for what it needs and letting it set the build parameters
accordingly. The most frequent mistake is to forget to put the <mpi_prefix>/lib/ directory in the LD_LIBRARY_PATH environment
variable, which causes the configure script to abort.

Additionally, abinis should not in principle depend on MPI libraries, which means in most cases that it should be built with a different
compiler than the mpif90 wrapper. This is unfortunately incompatible with having abinis and abinip built at the same time. The best
compromise we have found so far is to override the definitions of CC and FC with the compiler wrappers provided by MPI. This trick lets
us make sure that both binaries are built with the same compiler, at the price of abinis depending on MPI libraries.

In order not to have to memorize the configure options between each build, it is possible to store them in a config file. The
doc/config/build-config.ac file is a fully documented template, containing as well instructions on where to put it once it has
been customized. When running configure, the build system looks for a config file in the following locations:

• system-wide (in /etc/abinit/build/hostname.ac on Unix-compliant systems);
• in the user’s home directory;
• in the top source directory of ABINIT;
• in the top of the build directory;
• specified from the command line (using the --with-config-file option of configure).

The latest one found in this list wins, i.e. all other files are simply ignored. It is also possible to disable the use of a config file from the
command line, when desirable (--disable-config-file).

Regarding customization, the build system of ABINIT distinguishes between 4 levels:

• default values;
• values stored in the config file;
• values specified on the command line;
• values stored in environment variables.

When there are conflicting values at different levels, the order of precedence is the following: the defaults are overridden by the config
file, itself superseeded by the command-line options, which are in turn ignored if an environment variable of the same name is set.

This strategy (configure options + config files + precedence) allows for a very high flexibility. This lets ABINIT adapt to various plat-
forms – ranging from personal computers to HPC environments to build farms – without having to hack into the build system, while
bringing a fair amount of comfort to most users. It is nevertheless important to set the build environment carefully, some environment
variables such as PATH or LD_LIBRARY_PATH having a critical influence on the build system behaviour. Most of the problems encoun-
tered at configure time actually come from improper settings of these variables.

While typing “make” will suffice in most cases to have the binary executables built, the build system of ABINIT also offers several
options. One can build just one binary executable by typing “make <name_of_binary>”, or take advantage from a parallel platform
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Fig. 3. Handling of external files in an ABINIT run.

by typing “make mj4”. Please note that the usual “make -jn” will not work straightforwardly with ABINIT 5, due to some of the plug-
ins not having support for it and too complicated interdependencies within the core sources. Hence the “mj4” target. This issue has already
been solved and tested up to 16 processors for the upcoming ABINIT 6. Typing “make help” in various directories will display a help
message.

After the binary executables have been successfully built, and before installing them, it is extremely important to check that they do
what they are supposed to do, in particular if the results obtained from them are to be published in the mainstream scientific literature.
The simplest way to do that is to run the whole test suite by typing “make check”, which should be run at least once on every
production machine before starting to use any new version of ABINIT.

Once it has been ensured that ABINIT is working on the platform it has just been built on, it is time to install it through “make
install”. What is installed includes all binary executables, the whole documentation and the whole test suite. By default, in ABINIT 5,
everything is installed in /opt/etsf/abinit/x.y/, where x and y are respectively the first two digits in the version number. If a
prefix has been specified at configure time, it replaces the “/opt/etsf” part. We are aware that this way of setting the install path is
not a standard practice and can already say that ABINIT 6 will behave more conventionally in this respect.

2.5. How to run ABINIT

In the present section, we will suppose that the sequential version, abinis, is used. After the build, it is present in the package as
src/main/abinis, or opt/etsf/abinit/5.7/abinis.

As shown in Fig. 3, to run abinis, one needs at least four ingredients:

(1) Access to the executable (the center of Fig. 3);
(2) A list of file names, contained in a separate file (“Filenames” in Fig. 3);
(3) An input file (“Main input” in Fig. 3);
(4) A pseudopotential input file for each kind of element in the unit cell (“Pseudopotentials” in Fig. 3).

Supposing the file containing the list of file names is indeed named “Filenames”, then, in order to launch abinis, issue the command
(Unix):

abinis < Filenames

Alternatively, one can pipe the standard output in a file, e.g. “log”, as follows:

abinis < Filenames > log

In addition to the standard output, the run will produce at least one file, called “Main output” in Fig. 3. While the standard output
(“log”) is rather verbose, and should not be examined except if problems happen, the “Main output” contains relevant information on how
the run went, and important results such as total energy, forces, stresses, etc., in a self-descriptive format.

In order to learn how to construct an input file, please consult the tutorial, doc/tutorial/lesson_1.html, or the doc/users/
abinis_help.html file. Example input files are presented in the various tests/*/Input/ subdirectories.

Different sorts of pseudopotentials can be used with ABINIT. They are available from the Web site (http://www.abinit.org). Concerning
norm-conserving pseudopotentials, there are two (nearly) complete sets available, as well as several dozen pseudopotentials of other types.
PAW atomic datafiles exist, and a complete periodic table is in preparation. A subset of existing pseudopotentials is used for test cases,
located in the tests/Psps_for_tests directory, that includes the complete set of Hartwigsen–Goedecker–Hutter LDA potentials [17].
Links to utilities to generate more pseudopotentials are mentioned on the Web site. Information on pseudopotential files can be found in
the doc/users/abinis_help.html file and the doc/psp_infos/ directory.

Given an input file and the required pseudopotential files, the user must create a “Filenames” file which lists names for the files the
job will require, including the main input file, the main output file, root names for other input, output, or temporary files, and different
pseudopotential file names.

Such a “Filenames” file (called for example ab.files) could look like:

ab_in
ab_out
abi
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abo
tmp
14si.psp

In this example:

– The main input file is called “ab_in”;
– The main output will be put into the file called “ab_out”;
– The name of the files containing previous results (if any) will be built from the root “abi” (e.g. abi_WFK, see later);
– Output files will be build from the root “abo” (e.g. abo_WFK, see later);
– The temporary files created by ABINIT will have a name that use the root “tmp” (e.g. tmp_STATUS);
– The pseudopotential needed for this job is “14si.psp”.

Finally, in Fig. 3, the last information to be mentioned concerns the “previous results” and “other results”. These refer to binary or
NetCDF files, that contain numerical data, like wavefunctions, density, potentials. The list of such files, their nomenclature, the settings
needed to produce them, or to read them, are described in doc/users/abinis_help.html. In the context of the present paper, it
suffices to know that the name of files containing wavefunctions usually ends with _WFK (for WaveFunctions at wavevector K), or _KSS
(for Kohn–Sham structure), and the name of files containing the density ends with _DEN.

3. Developments related to ground-state calculations with the Projector-Augmented Wave methodology

3.1. The Projector-Augmented Wave method

General framework
The PAW (Projector-Augmented Wave) method has been introduced by Peter Blochl [21] in 1994. It is an extension of augmented wave

methods and the pseudopotential approach, which combines their traditions into a unified electronic structure method. It is based on
a linear and invertible transformation (the PAW transformation) that connects the “true” wavefunctions Ψnk (where nk refers to a band
index n and a crystalline momentum k) with the “auxiliary” (or “pseudo”) soft wavefunctions Ψ̃nk:

|Ψnk〉 = |Ψ̃nk〉 +
∑

i

(|Φi〉 − |Φ̃i〉
)〈

p̃i
∣∣Ψ̃nk

〉
. (1)

The global index i is used to identify the various partial waves located at the different atomic positions R, of angular momentum (l,m)

and possibly an additional label if more than one partial wave is required to accurately describe some atomic angular momentum channel.
This relation is based on the definition of atomic spheres (augmentation regions) of radius rc around the atoms of the system in which

the partial waves Φi form a basis of atomic wavefunctions; Φ̃i are “pseudized” partial waves (obtained from Φi ), and p̃i are dual functions
of the Φ̃i , called projectors.

It is therefore possible to write every quantity depending on Ψnk (e.g. density, energy, Hamiltonian) as a function of Ψ̃nk and to find
Ψ̃nk by solving self-consistent equations.

The PAW method has two main advantages:

– From Ψ̃nk(r), it is always possible to obtain the true “all electron” wavefunction Ψnk(r).
– The expansion of the Ψ̃nk(r) ini terms of planewaves is comparable to the ultrasoft pseudopotential scheme.

The effect of this last property can be seen, for instance, in tutorial PAW1 provided in ABINIT (doc/tutorial/lesson_paw1.html).
For a single diamond crystal structure, convergence of total energy at 1 mHa precision is achieved for a planewave cutoff energy of 25 Ha
when using a Troullier–Martins pseudopotential where as a planewave cutoff energy of 12 Ha is needed using PAW.

From a practical point of view (user’s point of view), a PAW calculation is rather similar to a norm-conserving pseudopotential. Most
noticeably, one will have to use a special atomic data file (PAW dataset) that contains the Φi , Φ̃i and p̃i and that plays the same role as a
pseudopotential file.

Available functionalities
The detailed implementation of the PAW method in ABINIT is discussed in Ref. [22]. In this paper are described the notations used

here, the analytic formula to compute forces and stresses, numerical details concerning the calculation of real spherical harmonics, the
non-local term and the exchange–correlation terms in the PAW atomic spheres.

Quite a large number of PAW functionalities have been implemented for the ground state: total energy, analytic computation of forces
and stresses which allows geometry optimization and molecular dynamics, spin polarized and non-colinear spins calculations, electric and
thermal conductivity, Berry phase calculation and calculation of total and partial Density of States.

When the electronic orbitals are localized into the PAW spheres, and if the partial wave basis is complete, we have for these orbitals:∣∣Ψ̃nk
〉 ≈ ∑

i

∣∣Φ̃i
〉〈

p̃i
∣∣Ψ̃nk

〉
,

so that the relation (1) reduces to

|Ψnk〉 ≈
∑

i

|Φi〉
〈
p̃i

∣∣Ψ̃nk
〉
. (2)
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Fig. 4. Comparison between “potential mixing” and “density mixing” for PAW. Example of bcc iron [22].

In this situation, it is therefore possible to develop functionalities that are fully localized in the PAW augmentation regions only. Exam-
ples of such functionalities, as described in later sections, are: LDA + U, local hybrid functionals (PBE0), spin–orbit coupling and core
spectroscopy calculations.

Accuracy and efficiency
In order to ensure maximum accuracy of the results and to avoid issues due to numerical precision, each physical quantity is computed

using the derived analytical formula. Use of numerical derivatives, splines or series developments has been avoided as far as possible and
the refinement of the grid spacing is adjustable using keyword parameters in the input file (.in). As an example, we can focus on the
computation of the stress tensor, the full expression of which is given in Ref. [22] (see Appendix D). In addition to the planewave part,
development of stresses on the partial waves has been analytically expanded. It involves the use of spherical harmonics derivatives
analytically computed at an arbitrary precision level.

To improve the speed performance of the code, the approach adopted was to compute once and store constant quantities as much as
possible. This is especially the case for “on-site” PAW quantities. For example, the non-local pseudopotential strengths (see Appendix E
in Ref. [22]) is expressed as Dij = D0

i j + ∑
kl ρklei jkl + D XC

ij + D̂i j and the atomic quantities D0
i j and ei jkl are precomputed before the self-

consistency loop. Also, the moments of the compensation charge density Q̂ LM
ij (r) = qLM

ij gL(r)SLM(r̂) are computed for each new set of
atomic positions and stored in memory at the beginning of the execution. As is often the case, speed efficiency and memory requirement
are in competition and the present PAW implementation is no exception as these constant PAW quantities may need quite a lot of memory.
In order to help the user to choose the best compromise for his or her computational architecture, many parameters can be adjusted from
the input file (see “PAW variables” in ABINIT documentation (doc/input_variables/varpaw.html)). It is thus possible to compute
some quantities on-the-fly instead of storing them. By default all parameters are adjusted to “accuracy” (instead of “efficiency”) and all
constant quantities precomputed.

Self-consistent cycle and mixing
The robustness of ABINIT PAW calculations is largely influenced by the behaviour of the electronic density during the self-consistent

cycle which is the core of the resolution of KS equations. The efficiency of the self-consistent cycle can be improved by the use of
sophisticated mixing and preconditioning schemes (see for instance Section 7.3). This is particularly needed in the case of PAW because
degrees of freedom are added to the electronic density written now as n(r) = ñ(r) + n̂(r), where ñ(r) is the pseudovalence density and
n̂(r) is the compensation charge density. The latter is directly related to the PAW occupation matrix ρi j which also has to be taken into
account in the mixing scheme.

Since the first versions, ABINIT used the potential as the “mixed” variable; at the end of each self-consistent cycle step the potential
residual is preconditioned and then mixed with previous potential in order to obtain the next potential. We added the same mixing
scheme for the ρi j matrix. But this choice is not optimum as ρi j is not directly involved in the computation of the potential. Since this
quantity is related to the density, it would be better to work solely the electronic density. For this reason, we modified the self-consistent
cycle of ABINIT in order to mix the density instead of potential. “Potential mixing” or “density mixing” can be activated from a keyword
parameter indicated in the input file (see iscf keyword). Their respective efficiencies are compared in Fig. 4 where the bcc iron is treated,
taken from Ref. [22]. As it can be seen from this figure, final efficiencies are comparable for both schemes. However we have observed on
several systems that the density mixing scheme was sometimes more efficient than the potential mixing. With regard to the behaviour
of total energy during the self-consistent cycle, it is remarkably different: when potential mixing is activated, all parts of the total energy
are computed at the same time; the total energy is thus variational with respect to the self-consistent cycle step. When density mixing
is activated, parts of total energy are computed at various stages of the cycle which results in a behaviour of total energy that is not
variational.
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All mixing and preconditioning schemes implemented in ABINIT – even the most sophisticated ones – are compatible with the PAW
formalism.

PAW datasets
In order to perform PAW calculations, ABINIT needs for each atomic species a so-called PAW dataset file containing all constant data

for the atom: definition of the electronic configuration, partial waves basis and associated projectors, all “frozen” atomic data, etc. All the
needed PAW dataset files, also improperly called PAW pseudopotential files, have to be set in the files file exactly like norm-conserving
pseudopotential files.

Use of PAW datasets gives the possibility to control not only approximations (frozen core approximation, completeness of partial waves
basis, etc.) but also transferability and efficiency of atomic data (choosing radius of augmentation regions or pseudization schemes). For
these reasons, even if pre-build PAW datasets are provided on the ABINIT web site, several tools to produce specific PAW datasets are
included in the package. They are provided under the GNU-GPL license. A specific tutorial (tutorial PAW2) helps inexperienced users to
become familiar with them (doc/tutorial/lesson_paw2.html).

From the ABINIT package, production of new PAW datasets is possible using two different utilities (PAW datasets generators):

• Atompaw2Abinit is a convertor generating PAW datasets for ABINIT from datasets produced by the ATOMPAW code [23,24]. Ini-
tially written by N. Holzwarth, ATOMPAW has been modified in order to produce data compatible with ABINIT requirements. Several
improvements have also been added such as efficient schemes to build the partial wave basis, logarithmic radial grids and relativistic
resolution of atomic problem.

• Uspp2Abinit is a plugin for the USPP code [25]. USPP, originally written by D. Vanderbilt to produce ultrasoft pseudopotentials [26],
can be modified in order to produce PAW datasets directly usable by ABINIT. USPP provides a lot of interesting features and produces
efficient partial wave basis that can be easily converted into PAW datasets using Uspp2Abinit.

Guide for use
In a norm-conserving pseudopotential calculation, the (planewave) density grid is (at least) twice bigger than the wavefunctions grid,

in each direction. In a PAW calculation, the (planewave) density grid is tunable thanks to the input variable pawecutdg (PAW: ECUT for
Double Grid). This is needed because of the mapping of quantities (e.g. densities, potentials) located in the augmentation regions (PAW
spheres) onto the global FFT grid. The number of points of the Fourier grid located in the spheres must be high enough to preserve the
precision. It is determined from the cutoff energy pawecutdg. One of the most sensitive quantity affected by this grid transfer is the
compensation charge density; its integral over the augmentation regions (on spherical grids) must cancel with its integral over the whole
simulation cell (on the FFT grid). Although convergence with respect to the parameter pawecutdg should always be checked, in practice, a
common use it to put it at least twice larger than ecut and keep it constant during all calculations. Increasing pawecutdg slightly changes
the CPU execution time, but above all it is highly memory-consuming. Note that, if ecut is already large, there is no need for a large
pawecutdg. When testing ecut convergence, pawecutdg has to remain constant to obtain consistent results.

Comparing with a norm-conserving calculation, there are two differences to execute a PAW calculation:

– the keyword pawecutdg must be added in the input file. There is no default value for this variable as it governs the convergence of
the FFT grid for densities.

– a PAW atomic data set must be used in place of the pseudopotential file.

ABINIT automatically detects from the atomic file that the calculation is a PAW one.
There are other input keywords specific to PAW (see “PAW variables” in ABINIT documentation). They are to be used when tuning the

computation, in order to gain accuracy or save CPU time. In a standard computation, these variables should not be modified.

Automatic tests and tutorials
PAW features in ABINIT are included in the set of automatic tests in the tests/v4/, test/v5/ and tests/paral/ directories.
In the tests/v4/ directory, almost all the main ground-state functionalities – not specific to PAW – are tested. Energy, forces, stresses

for several system types can be checked using tests/v4/t04.in to tests/v4/t06.in input files. Self-consistent cycle and different
mixing schemes tests (either on potential or on density) are provided in tests/v4/t07.in. Other specific uses within PAW can be
checked using test/v4/t08.in, tests/v4/t09.in and tests/v4/t94.in input files.

In the tests/v5/ directory, all PAW specific functionalities are tested. They are described in the following sections. It can nevertheless
be useful to cite that tests/v5/t16.in input file provides run examples for magnetic systems (ferromagnetic, antiferromagnetic and
non-collinear), while tests/t5/v17.in tests the spin–orbit coupling implementation. Finally, the tests/paral/ directory contains
several input files referring to PAW capabilities in the framework of various parallelism schemes.

In addition, new users may be helped in using ABINIT PAW features by two tutorials. Tutorial PAW1 is related to the general use of
ABINIT in the framework of the PAW method, while tutorial PAW2 is specifically devoted to the generation of PAW datasets.

On-going developments
The development of the PAW functionalities in ABINIT is now evolving in two directions, a coupling of PAW + LDA framework with

the Dynamical Mean-Field Theory [27], and the implementation of the Density-Functional Perturbation Theory within the PAW formalism
[28,29].

3.2. The LDA + U approximation

Density-Functional Theory, in the usual LDA or GGA approximations, does not describe correctly the interaction between electrons,
and contains moreover a spurious self-interaction. As a consequence, it is not able to describe strongly correlated systems which contains
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partially filled d or f shells. A way to correct this failure is to take explicitly into account the interaction between d or f electrons through
a Hubbard-like term in the Hamiltonian. In the static mean field approximation, this correction leads to the LDA + U [30–32] method,
which depends on two parameters: the Coulomb interaction U and the exchange J .

In this framework, the contribution to energy is the sum of the LDA energy for a given density, the electron–electron interaction term
Eee from the Hubbard term and a double counting term −Edc: ELDA+U = ELDA + Eee − Edc.

• In the implementation, Eee is used in the rotationally invariant form of Ref. [32]. As a consequence, the LDA + U energy is a function
of an occupation matrix nσ

m,m′ expressed in the correlated orbitals basis.
• Two implementations of the double counting correction are provided. In the “Full Localized Limit” (FLL) [30,32,33], activated if

usepawu=1, Edc corresponds to the value of Eee in a reference system in which the occupation matrix is diagonal and diagonal
elements are whole numbers. The “Around Mean Field” (AMF) version, in contrast, is designed to correct a system in which electrons
are equally shared among correlated orbitals [33]. It is used if usepawu=2.

Other input variables are mandatory to use LDA + U: For each species, lpawu defines the angular momentum on which the LDA + U
correction is applied (if lpawu=−1, no correction is applied). upawu and jpawu give the corresponding values for U and J. The imple-
mentation is described in some details and tests on well-known systems are given in Ref. [34].

Following the work of Bengone et al. [35], the occupation matrix is defined only inside the PAW atomic sphere. Special care must be
devoted to the choice of atomic data, which must have sufficiently large PAW radii. Two different expressions of the occupation matrix
can be used according to the keyword dmatpuopt (see Ref. [34] for the explicit formulation).

The most used version of LDA + U, namely the Full localized limit (usepawu=1) minimizes the interaction energy if the correlated
orbitals are either empty or full, whereas in LDA, electrons are equally shared among correlated d or f orbitals. This explains why LDA + U
opens a gap inside correlated orbitals and is thus able to describe Mott insulators. However, as a consequence, it is possible to have a
local minimum of the energy for different filling of the correlated orbitals. In this case, it can be hard to find the absolute minimum.
A way to solve this problem is to impose the starting occupation matrix, during a given number of steps (indicated by the input variable
usedmatpu), in order to study different metastable states [34,36]. The value of the starting occupation matrix (for d-elements, a 5 × 5
matrix for each spin), is given by the input variable dmatpawu. In order to have more insight on the occupations of orbitals, one can
diagonalize the occupation matrix thanks to dmatudiag=1.

4 automatic tests are given with the code (for NiO: see the example input files tests/v5/t08.in, tests/v5/t11.in and
tests/v5/t20.in and Gd: tests/v5/t19.in). The calculations using an imposed density matrix are in particular tested for d and
f elements. The collinear and non-collinear implementations are tested. A tutorial (doc/tutorial/lesson_ldau.html) is available
and explains how to do a LDA + U calculation for nickel oxide.

3.3. The local PBE0 approximation

Recently, Novák et al. proposed to apply the exact exchange functional to a restricted subspace formed by the correlated electrons of
a correlated system and called this method “exact exchange for correlated electrons” (EECE) [37]. This approach is used in the Projector-
Augmented Waves (PAW) framework: the PBE0 [38] exchange–correlation hybrid form functional is implemented only inside the PAW
atomic spheres for correlated orbitals.

In this frame the exchange–correlation energy is:

EPBE0
xc [ρ] = EPBE

xc [ρ] + 1

4

(
EHF

x [Ψsel] − EPBE
x [ρsel]

)
, (3)

where PBE refers to the Perdew–Burke–Ernzerhof exchange–correlation functional [39]. Ψsel and ρsel represent the wavefunction and the
corresponding electron density of the selected electrons respectively [40]. The selected electrons are the correlated electrons, for instance
the d electrons of Ni in NiO. The exchange Hartree–Fock (HF) term is:

EHF
x [Ψsel] = −1

2

occ∑
nn′

δσn,σn′

∫
dr dr′ Ψn(r)Ψ ∗

n′(r)Ψ ∗
n (r′)Ψn′(r′)

|r − r′| , (4)

where n and n′ range over occupied correlated states and σn and σn′ are the associated spins. As we are interested here only in localized
correlated states, we make the assumption that the correlated orbitals are zero outside the PAW sphere. Putting Eq. (2) into Eq. (4) leads,
after some calculations, to:

EHF
x [Ψsel] = −1

2

∑
LM

4π

2L + 1

∑
did jdkdl

F L
did jdkdl

∑
mim jmkml

〈mi |LM|m j〉〈mk|LM|ml〉
∑
σ

ρσ
ikρ

σ
jl , (5)

where 〈mi |LM|m j〉 are real Gaunt coefficients calculated for the selected l momentum, F L
did jdkdl

the Slater integrals, and ρσ
i j =∑

nk fnk〈Ψ̃ σ
nk|p̃i〉〈p̃ j |Ψ̃ σ

nk〉; index i (resp. j) in ρσ
i j stand for (di,mi) (resp. (d j,m j)), where di = (li,ni) for a selected (d) orbital.

This result is equivalent to the formulation already established in Ref. [41] for the all electron one-center part of the exchange energy.
The Slater integrals and the real Gaunt coefficients are calculated once and for all. From the knowledge of the occupation matrix ρσ

i j , the

energy is calculated directly from Eq. (5) and from the quantity EPBE
x [ρsel]. The corresponding KS potential is deduced by derivation of this

energy, which leads to a supplementary non-local term in the Hamiltonian.
To use the local PBE0 approximation in ABINIT, two keywords must be activated:
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– useexexch must be put to 1 to allow the use of the exact exchange in the spheres (default value is 0).
– lexexch controls the angular momentum selected for the correlated orbitals (2 for d orbitals; 3 for f orbitals).

It is also possible to change the mixing factor of exact exchange (1/4 by default) thanks to the keyword exchmix. A test is provided in the
ABINIT package (see the example input file tests/v5/t18.in).

3.4. Berry phase calculation of polarization within PAW

The polarization of a finite piece of matter of volume V can be computed as the dipole moment per unit volume:

P = e

V

[∑
κ

ZκRκ −
∫
V

dr rn(r)

]
, (6)

where Zκ and Rκ are the atomic number and position of the κth atom, e is the absolute value of the electronic charge, and n(r) is
the electronic charge density. Although such a dipole moment is in principle well defined, P is not a bulk property, being dependent
upon truncation and shape of the sample. However, the variations of P are indeed measured as bulk material properties in several
circumstances. Thus, the calculation of the polarization under periodic boundary conditions is a nontrivial task, and this problem was
solved by Resta, Vanderbilt, and King-Smith in Refs. [42–44] building the modern theory of polarization. The theory in the framework of
the norm-conserving and ultrasoft pseudopotentials formalism is respectively given in Refs. [44] and [45]. In addition, the formalisms of
the Berry phase and maximally localized Wannier functions (MLWFs) are closely linked. The case of the generation of Wannier functions
for ultrasoft pseudopotentials is detailed by Ferretti et al. [46]. In this subsection, we only detail peculiarities of our PAW implementation.

The macroscopic polarization is the sum of an ionic part, Pion , and an electronic part, Pelec . Within the PAW formalism, the last one is
decomposed into two terms: the Berry Phase term (BP) and the expectation value (EV) term [45]:

P = Pion + Pelec = Pion + PBP + PEV. (7)

The EV term, described in Ref. [45], can be written as:

PEV = −2e

V

∑
n

∑
k

∑
i, j

di j
〈
Ψ̃nk

∣∣p̃i
〉〈

p̃ j
∣∣Ψ̃nk

〉
, (8)

where di j = ∫
rQ ij(r)dr is the dipole moment of the augmentation charge Q ij(r) = (Φi(r)Φ j(r) − Φ̃i(r)Φ̃ j(r)).

The BP term can be expressed as a function of the overlap matrix, Mk,b
mn , used in the computation of MLWFs [45]. We can generalize

the equation for Mk,b
mn in Ref. [46] to the PAW case:

Mk,b
mn = 〈

Ψ̃mk
∣∣e−ibr

∣∣Ψ̃nk+b
〉 + ∑

i, j

Q i j(b)
〈
Ψ̃mk

∣∣p̃i
〉〈

p̃ j
∣∣Ψ̃nk+b

〉
, (9)

where

Q ij(b) =
∫

dr Q ij(r)e−ib·r

= 4πe−ib·Rκ
∑
L,M

GLM
limil jm j

(−i)L SLM(b̂)

∫
dr r2 jL(br)

(
φlini (r)φl jn j (r) − φ̃lini (r)φ̃l jn j (r)

)
. (10)

In this equation, SLM are real spherical harmonics, G are Gaunt coefficients, φli ,ni (r) is the radial part of Φi(r), and the b-vectors connect

nearest-neighbor k-points. The equation for Mk,b
mn differs from the one obtained by Vanderbilt et al. [45], but they have the same limit as

the number of k-points increases [46].
In practice, Eqs. (8) and (9) have been implemented inside ABINIT in the berryphase_new.F90 subroutine. The keyword berryopt=−1

activates the Berry phase calculation and the keyword rfdir must be used to specify the primitive vector along which the projection of the
polarization will be computed. The computed polarization is then given both in reciprocal and Cartesian coordinates. Presently, the Berry
phase calculation is compatible with spin polarization (nsppol=2) but it is not compatible with spinors (nspinor=2). Two automatic tests,
tests/v5/t12.in and tests/v5/t13.in, are available.

3.5. Electronic transport properties in PAW

The transport properties such as electrical and thermal conductivities, index of refraction, or absorption can be obtained using norm-
conserving or PAW potentials. In both cases, this requires a ground state calculation performed using the ABINIT package and the use of
the conducti utility as explained in doc/users/conducti_manual and doc/users/conducti_manual_paw.

Neglecting the phonon contribution, the transport properties of condensed matter systems such as solids or dense plasmas are cal-
culated for a fixed ionic configuration obtained from crystallographic structure information or molecular dynamics trajectories. For a
simulation cell containing N atoms, the electronic wavefunction for the Ne active electrons obtained within the KS framework leads to
nb orbitals ψi,k with corresponding energies εi,k for a given k-point. The electrical and optical properties are obtained using the Kubo–
Greenwood formulation which leads to the real part of the electrical conductivity [47–49], σ1(k,ω):

σ1(k,ω) = 2π

3ωΩ

nb∑
j=1

nb∑
i=1

3∑
α=1

(
F (εi,k) − F (ε j,k)

)∣∣〈ψ j,k|∇α |ψi,k〉∣∣2
δ(ε j,k − εi,k − ω). (11)
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We employ atomic units, with the electron charge e, Planck’s constant h̄, and the electron mass me all set to unity. The i and j summations
range over the nb discrete bands (orbitals) included in the triply periodic calculation for the cubic super-cell volume element Ω . The α
sum is over the three spatial directions. F (εi,k) is the Fermi weight corresponding to the energy εi,k for the ith band for the k point k. The
total optical conductivity is obtained by direct summation over all necessary k-points. Using the Kramers–Kronig relations, the calculation
of real part of the optical conductivity leads to the dielectric functions, ε(ω) = ε1(ω) + iε2(ω), complex index, n(ω) = n(ω) + ik(ω), the
absorption coefficient, α(ω) and the reflectivity, r(ω) [50].

Within the PAW formalism, the matrix elements become

〈ψm,k| �∇|ψn,k〉 = 〈ψ̃m,k| �∇|ψ̃n,k〉 +
∑
i, j

〈ψ̃m,k|p̃i〉〈p̃ j|ψ̃n,k〉(〈φi| �∇|φ j〉 − 〈φ̃i| �∇|φ̃ j〉
)
, (12)

where the first term is the planewave contribution and the last two terms are the PAW corrections obtained in spherical coordinates
using the usual separation φ(r) = un,l(r)

r Sl,m(r̂) where Sl,m(r̂) are real spherical harmonics. Details of the implementation can be found in
Ref. [51]. Activation of the option prtnabla=1 during a ground state calculation produces these matrix elements in the file filename.OPT.
Sample, input files for a complete calculations of the transport properties can be found in tests/v5/t10.in and tests/v5/t11.in.

In the X-ray regime, the absorption is directly proportional to the optical conductivity given by Eq. (12) but with the summation on the
indices n and m involving core electron states. To extend the calculation of the optical conductivity to include core electrons, we further
evaluate the following matrix elements

〈ψm,k| �∇|φc〉 = 〈ψ̃m,k| �∇|φc〉 +
∑

i

〈ψ̃m,k|p̃i〉
(〈φi| �∇|φc〉 − 〈φ̃i| �∇|φc〉

)
. (13)

Following M. Taillefumier et al. [52], we evaluate matrix elements for core electrons whose wavefunction vanishes outside the PAW sphere
of the absorbing atom. In this case, and assuming that the pseudopartial wave |φ̃R,n〉 form a complete basis for the pseudo-wavefunction
|ψ̃i,k〉 within the PAW sphere, the matrix elements reduce to

〈ψm,k| �∇|φc〉 =
∑

i

〈ψ̃m,k|p̃i〉〈φi| �∇|φc〉. (14)

These matrix elements used in Eq. (11) allows to calculates the X-ray absorption cross section, σ X (ω), in a single particle approach.
This directly allows to obtain the XANES spectra near an edge where the corresponding wavefunction vanishes outside the PAW sphere
in the impurity model [52,53]. Activation of the option prtnabla=2 during a ground state calculation produces the file filename.OPT2
containing the matrix elements involving core electrons. This calculation requires the core wavefunctions and energies saved during the
pseudopotential generation using a modified version of the atompaw generator. During the ABINIT run, the orbitals and their energies are
read from the file corewf.dat.

3.6. Properties at the nuclei: Electric field gradients and Mössbauer isomer shifts in the PAW formalism

Because the PAW formalism provides a robust way to reconstruct the all-electron wavefunctions in the valence space, it is suitable
for computing expectation values of observables localized even very close to the nuclei. Obtaining equivalent accuracy within the norm-
conserving pseudopotential framework would require very small atomic radii for the pseudization procedure, and concomitantly high
planewave cutoff energies and lengthy calculations. There remains the question of whether even all-electron accuracy in the valence space
is sufficient for accurate representation of observables close to the nuclei, where conventional wisdom would suggest that deep core
polarizations might be quite significant for properties such as the electric field gradient or Fermi contact interaction. Such concerns turn
out to be unwarranted, however, as our experience and others have shown that the PAW formalism together with a typical chemical
valence/core separation are sufficient for accurate description of nuclear point properties such as the electric field gradient [54–56], Fermi
contact interaction [57] and magnetic chemical shielding [58].

Both the electric field gradient and Fermi contact interaction are ground-state observables, and their computation adds negligible time
to a normal self-consistent ground state calculation. The electric field gradient is computed from the electrostatic potential as

Vαβ =
[

∂2

∂xα∂xβ

∫
n(r)

r
dr

]∣∣∣∣
R
, (15)

where n(r) is the total charge density and R is the location of the nucleus of interest. The total charge density in the PAW formalism
contains the pseudovalence density, the nuclear ionic charges, and the all-electron and pseudocharge densities within the PAW spheres.
As done in earlier work, the electric field gradient due to the pseudovalence density is computed in reciprocal space, and the gradient
due to the (fixed) ionic charges is computed with an Ewald sum approach. The PAW sphere charge densities contribute matrix elements
of (3xαxβ − r2δαβ)/r5, weighted by the charge densities in each channel determined by the self-consistent minimization procedure. This
treatment [56] is more flexible than for example assuming all bands are doubly occupied, and permits the current approach to be used
with more complex electronic and magnetic states than just insulators.

Within ABINIT, the electric field gradient computation is invoked with the keyword prtefg (for Print EFG), together with the keyword
quadmom. The prtefg keyword takes the values 1–3. For value 1, the electric field gradient coupling in MHz is reported, where the
conversion is made by atom by combining the gradient with the nuclear quadrupole moments supplied by quadmom. When prtefg
is input as 2, the additional breakdown of the field gradient in terms of valence and on-site PAW terms is reported, along with the
eigenvectors of the EFG matrix, so that principal directions may be determined with respect to the crystal axes. Finally, prtefg=3 allows
additional computation of a point-charge model of the gradient, for comparison purposes. The point charges by atom are supplied through
the additional variable ptcharge. Detailed examples of the use of ABINIT to compute EFG’s can be found in Refs. [56,59] and tests input
files t35.in, t51.in, t52.in, and t53.in, of tests/v5.
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The Fermi contact interaction, which is just the electron density evaluated precisely at the nuclear location, is an important component
of the isomer shift measured in Mössbauer spectroscopy. The isomer shift is directly proportional to nabs(R) − nsrc(R), the difference in
electron density at the absorber (sample) and the source. Evaluating the density at a nuclear position can be accomplished by treating
δ(r − R) as the observable, that is, the three-dimensional Dirac delta function centered on the nuclear position R. Because of the short-
range nature of the delta function, in the PAW-transformed version of the observable only matrix elements of the on-site all-electron
valence functions are required [57], and these are evaluated from a linear fit to the first few points of the PAW radial functions.

Within ABINIT the Fermi contact interaction is invoked with the key word prtfc (for Print Fermi Contact, see also tests/v5/t34,36,
which only takes the value 1. When called, the electron density at each nuclear position is reported, in atomic units (electrons per cubic
Bohr). The isomer shift as measured in Mössbauer spectroscopy is typically reported in velocity units and is obtained from the formula

δ = c

Eγ

2π Ze2

3

[
nabs(R) − nsrc(R)

]
�

〈
r2〉, (16)

where c is the speed of light, Eγ the γ -ray energy, Z the atomic number, e the electron charge, and �〈r2〉 the change in the mean
square nuclear radius for the transition. The electronic densities nabs and nsrc refer to the absorber and source respectively. Because of
the linearity of this formula in the density at the absorber (sample) nucleus, the only unknown (�〈r2〉) can be obtained by comparing
the calculated values in several standards to experiment and then the computations can be used to interpret the measurements of new
materials. In Ref. [57] we showed how to perform such studies on a variety of compounds, including a number of 67Zn cases where it is
also necessary to correct for the second-order Doppler shift, and also the case of ZnO under pressure.

4. Other developments in ground-state calculations

4.1. Positron lifetime

In this section we describe the implementation of the positron lifetime calculation within the Two-Component Density-Functional
Theory [60–62] (TCDFT). This theory allows for the determination of the ground state electron charge and positron charge densities
(respectively n− and n+) associated to a system of interacting electrons and positrons moving in an external potential V ext . The TCDFT
states that the total energy of such a system is given by:

E[n+,n−] = F [n+] + F [n−] (17)

+
∫

dr V ext(r)
[
n−(r) − n+(r)

]
(18)

+
∫

dr
∫

dr′ n−(r)n+(r)

|r − r′| + Ee−p
c [n+,n−], (19)

where F [n] denotes the one-component DFT functional for electrons (or positrons) and Ee−p
c [n+,n−] is the electron–positron correlation-

energy functional. In the following we will focus on the case of a single positron in a solid. That implies that no positron self-interaction
is considered. Moreover, among the various parametrizations of the electron–positron correlation energy available in the literature, we
have chosen to apply the so-called conventional scheme in which one considers that (i) the positron density does not affect the DFT
electron density (the positron and its screening electron cloud form a neutral quasiparticle entering the system) and (ii) the positron
state and annihilation characteristics are calculated in the LDA (Local Density Approximation) and the zero-positron-density limit of the
electron–positron correlation functional. Although this approach is only correct in the case of a delocalized positron in a solid, it has
been shown that due to cancellation effects it works also pretty well for a trapped positron at a vacancy-type defect [61,63,64]. Within
the conventional scheme, a rather simple procedure may be used to compute the positron lifetime. First, we compute the ground state
electronic density as well as the associated Hartree–Coulomb potential (v H [n−(r)] = ∫

dr′ n−(r)n+(r)
|r−r′ | ) within the common DFT framework.

Then we construct the potential felt by the positron as v+(r) = −v H [n−(r)] + ve−p
c [n−(r)] + vn[{Z I ,RI }], and we solve the following KS

equation1:

−1

2
∇2ψ+

i (r) + v+(r)ψ+
i (r) = ε+

i ψ+
i (r), (20)

where vn[{Z I ,RI }] stands for the interaction between the nuclei (charge Z I and positions RI ) and the positron, ψ+
i and ε+

i are respectively
the positron wavefunctions and eigenvalues. The wavefunction ψ+(r) that corresponds to the lowest energy of ε+ yields the positron
charge density n+(r) = |ψ+(r)|2. Note that the Coulomb potential arising from the electrons is the same as the one sensed by the
electrons except for a change of sign. At this stage, we know both the ground state electrons charge and positron charge densities. The
positron lifetime τ if then defined as the inverse of the annihilation rate λ:

τ = 1/λ =
(
πr2

e c

∫
drn+(r)n−(r)Γ

[
n−(r)

])−1

, (21)

where re is the classical electron radius and c is the speed of light. The term Γ is called the enhancement factor and is introduced in
order to take into account the increase in the annihilation due to the screening cloud of electrons around the positron. We adopted the
correlation potential and enhancement factor parametrized by Boroński and Nieminen [61] from the results of Arponen and Pajanne [65].

In order to compute a positron lifetime with ABINIT, one has to chain two calculations. The first is the ground state calculation from
which we output the Hartree electrons potential by setting prtvha to 1. In the second calculation, the positron ground-state as well as

1 Note that the thermalized positron in a lattice is in the k = 0 state. When studying ideal bulk systems we thus calculate the positron wavefunction at the Γ point only.
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the annihilation rate are computed by introducing the two keywords positron=1 and ixcpositron=1. The first one implements the KS
equation of the positron (Eq. (20)) and the second one chooses the parametrization of the electrons–positron correlation potential. Note
that the first dataset can be performed either within the norm-conserving pseudopotential framework or within the PAW one assuming
that ñ− + n̂− is a sufficiently good approximation of the all-electron (AE) density n− (see Makkonen et al. [66]). Obviously this latter
assumption does not allow to benefit from the AE accuracy of the PAW method. For both of the two cases presented above, we have to
construct a pseudopotential describing the interaction between the ions (the nuclei plus the core electrons) and the positron. In this work
we choose to use a purely local form for this potential v H [nc + Z I ] which is computed from an electronic core-density obtained with the
AE atomic code Fhi.

Within the ABINIT package, we provide an automatic test on bulk aluminum (tests/v4/t95.in followed by tests/v4/t96.in)
at the experimental volume (V 0 = 16.61 Å3). The calculated positron lifetime is 163 ps which is in good agreement with all the theoretical
values available in the literature as well as with experiments (the commonly accepted experimental value is 163 ps [67]). Indeed, LMTO-
ASA calculations are in the range 163–165 ps [68–70], while the more accurate FPLAPW method leads to a value of 166 ps [71].

4.2. Use of wavelets as basis set: the BigDFT project

The ABINIT code integrates also a DFT method based on Daubechies wavelets [72] basis set. They form a systematic orthogonal and
smooth basis that is localized both in real and Fourier space and that allows for adaptivity. Such a method was developed as an electronic
structure code per se, in the framework of a three years European STREP project, named BigDFT. Via the use of the input variable usewvl,
the KS SCF treatment in ABINIT can be done with the routines of the BigDFT code. The features of this code were described in its reference
paper [9], and we will briefly summarize here the principal points.

There are two fundamental functions in Daubechies family, the scaling function and the wavelet. The full basis set can be obtained
from all translations by a certain grid spacing h of the scaling and wavelet functions centered at the origin. Both functions are localized,
with compact support. Every scaling function and wavelet on a coarse grid of spacing h can be expressed as a linear combination of
scaling functions at the finer grid level h/2. For this reason, wavelet functions complete the information which is lacking for refining the
resolution level. The implementation of the BigDFT code uses only two resolution levels, namely one level of adaptivity. We can thus
classify the coarse and the fine degrees of freedom by the information expanded by the scaling and the wavelet functions respectively.

For a three-dimensional description, the simplest basis set is obtained by a tensor product of one-dimensional basis functions. In each
grid point the coarse degrees of freedom are expanded by a single three-dimensional function φ0

i1,i2,i3
(r), which corresponds to the tensor

product of three scaling functions, while the fine degrees of freedom can be expressed by adding other seven basis functions, φν
j1, j2, j3

(r),
which include tensor products with one-dimensional wavelet functions. A wavefunction Ψ (r) can thus be expanded in this basis:

Ψ (r) =
∑

i1,i2,i3

c0
i1,i2,i3

φ0
i1,i2,i3

(r) +
∑

j1, j2, j3

7∑
ν=1

cν
j1, j2, j3

φν
j1, j2, j3

(r). (22)

The sum over i1, i2, i3 runs over all the grid points contained in the low resolution region and the sum over j1, j2, j3 over all the points
contained in the (generally smaller) high resolution region. Such points belong to a uniform mesh of grid spacing h. Each wavefunction
is then associated to a set of coefficients {cμ

j1, j2, j3
}, μ = 0, . . . ,7. The fundamental input parameters, which define the mesh spacing of

the simulation box and the extension of the low and high resolution regions are wvl_hgrid, wvl_crmult and wvl_frmult respectively. The
wavefunctions are stored in a compressed form where only the nonzero scaling function and wavelets coefficients are stored. The basis
set being orthogonal, several operations such as scalar products among different orbitals and between orbitals and the projectors of the
non-local pseudopotential can directly be done in this compressed form.

Wavelet properties allow to express analytically (within machine precision) the matrix elements of the kinetic operator as well as
the nonlocal part of the pseudopotentials. The BigDFT code supports the GTH-HGH [17,73,74] norm-conserving pseudopotentials which,
thanks to their analytic expression, allow an accurate expansion in Daubechies basis.

The real space expression of the KS wavefunctions, needed for expressing the charge density and for applying the local potential,
is given in the Deslauriers–Dubuc interpolating scaling functions [75]. The latter is a basis set which is intimately connected with the
Daubechies scaling functions, and which is optimal for expressing functions in real space. Indeed, the expansion coefficients of a given
function in the interpolating scaling functions basis coincide exactly with the values of that function on the mesh points. Working in
this basis eases the treatment of the local potential, including the XC term and the Hartree potential. The passage between Daubechies
and Deslauriers–Dubuc basis can be expressed efficiently without loss of precision. This can be done via the so-called “magic filter”
transformation [76], which allows to express with better accuracy the point values of the wavefunctions.

Thanks to these properties, the absolute precision of the results is only driven by the basis completeness, and we achieve a convergence
rate of O(h14). All computational operations of the BigDFT code, except for the linear algebra routines and the Poisson solver, can be
written in terms of convolutions with short, separable filters. Such a kind of operation can be efficiently optimized, which results in a code
with very good performances.

After the application of the Hamiltonian, the KS wavefunctions are updated via a direct minimization scheme [77], which in its actual
implementation is fast and reliable only for insulators. Tough at present the iterative diagonalization scheme used in the SCF cycle of
ABINIT cannot be used with a wavelet run, we see no reason why such a formalism cannot be extended to metallic systems.

Also the parallelization scheme used in a wavelet run of ABINIT is rather different than the one which is used conventionally. Two data
distribution schemes are used. In the orbital distribution scheme, used for the application of the Hamiltonian and the preconditioning,
each processor is working on one or a few orbitals for which it holds all its scaling function and wavelet coefficients. The wavefunction
orthogonalization as well as the calculation of the Lagrange multipliers is done in the coefficient distribution scheme, where each processor
holds a certain subset of the coefficients of all the orbitals. Switch back and forth between the orbital distribution scheme and the
coefficient distribution scheme is done by the MPI global transposition routine MPI_ALLTOALL. The parallelization scheme of the code has
an overall efficiency of about 90%, also for large systems with a big number of processors.
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A wavelet run of ABINIT is optimal for simulating isolated systems like molecules or clusters. The localization of the basis set allows
us to reduce considerably the number of degrees of freedom (i.e. the number of basis function which must be used) to attain a given
absolute precision with respect to a planewave based formalism. This fact reduces the memory requirements and the number of floating
point operations and, together with the optimal parallelization scheme, conceived for massive parallel computations, it allows to treat also
systems with few hundred atoms.

Examples of the use of the wavelets inside ABINIT are provided in tests/bigdft.

4.3. Wavelet-based computation of Coulomb energy and potential with finite boundary conditions

As already discussed, the Deslauriers–Dubuc interpolating scaling function basis described in Section 4.2 provide an interpretation of
the point values of a function on a uniform mesh. In other terms, for a given function, its values on a real space grid can be interpreted
as the expansion coefficients of that function in the interpolating scaling function basis. This basis is particularly well suited for solving
electrostatic problems. Indeed, for a function expressed in this basis, the first m discrete and continuous moments are identical for a mth
order interpolating wavelet family. For isolated boundary conditions, namely finite systems, the main features of an electrostatic potential
are determined by the multipoles of the charge distribution.

For these reasons, within the BigDFT project, a Poisson solver based on interpolating scaling functions was developed [78]. This solver
can also be used within other DFT methods, and is not restricted to wavelet basis sets. It is already integrated in different DFT codes,
like CP2K and OCTOPUS. It is also integrated in the conventional planewaves treatment of the ABINIT code. By putting the input variable
icoulomb = 1 this real space Poisson solver is used instead of the conventional reciprocal space treatment.

Let us summarize the main features of this solver. For a given charge distribution ρ , the Hartree potential V H , solution of the Poisson’s
equation ∇2 V H = −4πρ , can be obtained from a three-dimensional integral

V H (r) =
∫

dr′G
(|r − r′|)ρ(r′), (23)

where G(r) = 1/r is the Green’s function of the Laplacian operator for free boundary conditions. Within the interpolating scaling function
description the integral equation becomes a sum over a real space mesh with optimal quadrature coefficients, represented by a convolution
with a kernel K :

V H j1, j2, j3 =
∑

i1,i2,i3

K (i1 − j1, i2 − j2, i3 − j3)ρi1,i2,i3 , (24)

where the indices ip and jp run over the mesh points in the pth direction. The kernel function is expressed as the integral between the
Green’s function and the interpolating scaling function basis:

K (i1, i2, i3) =
∫

dx dy dz
ϕ(x − i1)ϕ(y − i2)ϕ(z − i3)√

x2 + y2 + z2
, (25)

where the interpolating scaling function is indicated by ϕ(x). The quadrature rule defined by the kernel is optimal in the sense that it
allows to express the point values of the Hartree potential by preserving the first multipoles of the continuous function defined in (23).
This formalism is thus optimal for electrostatic problems in isolated boundary conditions. It is based on real-space point values and, given
the Green’s function approach to the problem, it allows the treatment of charged systems explicitly. Moreover, for a grid of N points, the
convolution operation defined in (24) can be done with O(N log N) scaling by using zero-padded FFT.

The kernel function can be calculated by performing a tensor product decomposition of the Green’s function 1/r as a linear combina-
tion of Gaussians. This allows the kernel calculation to be separable in the three directions and reduces considerably the computational
overhead. The kernel functions can thus be calculated once and for all at the beginning of the DFT calculation and stored in memory.

The Poisson solver obtained in this way exhibit excellent computational performances, also in parallel computation, with optimal accu-
racy. Moreover, a version of this solver based on interpolating scaling functions for slab-like boundary conditions has been developed [79].
This solver is integrated in the BigDFT standalone code and it will be integrated in the future versions of ABINIT, either with wavelets or
planewaves calculations.

4.4. High-temperature DFT based on a recursion methodology

Increasing the temperature, KS DFT loses efficiency because the number of wavefunctions grows rapidly and actually DFT calculations
are limited at ∼4 eV. To extend the DFT calculations to higher temperature ranges we introduce into ABINIT a method based on a recursion
approach. This recursion method (RM), presented in this context in [80], avoiding Hamiltonian diagonalization, enables high temperature
calculations and is an order-N method.

Like usual DFT, the RM is based on the Hohenberg–Kohn–Sham framework where the ground-state energy of a system is a functional
of the electronic density ρ(r) only. But in the RM, ρ(r) is calculated directly from the Hamiltonian H = −


2 + V eff , without to solve the
KS equation.

If f (εn) is the Fermi–Dirac distribution of the electrons in the state ψn of energy εn , then the electronic density can be written as:

ρ(r) =
∑

n

ψ∗
n (r) f (εn)ψn(r) = 1 − 〈r| 1

1 + e−β(H−μ)
|r〉, (26)
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where |r〉 = δr is the Dirac-delta function centered in r, β is the inverse of the temperature and μ the chemical potential. We can apply
to ρ a partial fraction decomposition (PFD) which, for a reason that will be clear later, permits to boost the temperature (1/β → 2p/β).
So we write the density as:

ρ(r) = 1 − 1

2p

2p−1∑
j=0

〈r| z j

z j − e−β(H−μ)/2p
|r〉. (27)

On the other hand, if a matrix A is tridiagonal in some basis {|u0〉, |u1〉, . . .}:

A|un〉 = bn|un−1〉 + an|un〉 + bn+1|un+1〉, (28)

then G(u0, z) = 〈u0|1/(z − A)|u0〉, the mean value of the Green operator associated to A on the first basis vector, can be expanded as a
continuous fraction of the elements (an,bn) of A [81]. So, if (an,bn) are the tridiagonal elements of EH ≡ e−β(H−μ)/2p in r, then Eq. (27)
is given by:

ρ(r) = 1 − 1

2p

2p−1∑
j=0

z j G(r, z j) = 1 − 1

2p

2p−1∑
j=0

z j

z j − a0 − b2
1

z j−a1− b2
2···

. (29)

In ABINIT, ρ(r) is calculated on the discretized real-space which grid is defined by the variable ngfft. The fact that the local density on
each grid point can be computed independently implies that the RM is highly scalable.

The tridiagonalization of the operator EH is implemented by a Lanczos algorithm [82]. For any ri on the grid, posing |u0〉 = |ri〉 and
bi

0 = 1, this algorithm permits to find recursively the coefficients (ai
n,bi

n) and the basis vectors ui
n . If the numerical local density is

converged under the desired precision or the recursion rank n exceeds the value fixed by recnrec, then the algorithm is stopped. The
convergence properties of this algorithm are considered in [83].

During the Lanczos algorithm, the crucial step is the application of the EH on generic vector |u〉. This is implemented by the second
order Trotter formula which permits to factorize the exponential of the sum of operators:

EH|u〉 = eμβ/2pe−Vlβ/4pF−1[F[T ]F[
e−Vlβ/4p|u〉]] + Error Term, (30)

where F represents the FFT and T (r) = (p/πβ)3/2e−p‖r‖2/β is the kernel if the convolution operator eβ
/4p [80]. The Error Term in
Eq. (30) has been estimated in [83] and shown to decrease with the temperature. Therefore, when the density is expressed as in Eq. (27),
we tune the parameter p in order to be able to neglect the Error Term in Eq. (30). The value of p can be varied by recptrott. Let us note
that, at present, only the local part of the potential is implemented into Eq. (30).

The RM is activated by the keyword tfkinfunc=2. In any self-consistent loop, the density ρ is calculated on all the points of the grid
and then μ is calculated by imposing that

∑
i ρ(ri) = N , the total number of electrons. When ρ has converged, the self-consistent loop is

stopped. Finally the entropy S and the Grand Potential Ω are calculated by path integral methods using the (ai
n,bi

n) calculated during the
RM:

S =
∑

i

1

2iπ

∮ (
h(z) + h

(
z−1))G(ri, z)dz, (31)

Ω = − 1

2iπβ

∑
i

∮
g(z)G(ri, z)dz, (32)

where G(ri, z) is defined by Eq. (29), h(z) = − ln(1+z2p)

1+z2p and g(z) = ln(1 + z2p). From this, the pressure can computed in the usual way. In
our implementation the path integral are discretized on a number of points given by recnpath. Using the previous relations, the internal
energy is given by: E = Ω + S/β + μN .

The size of the vector u in Eq. (30), which represents the interaction range and its locality, can be controlled by the definition of a
radius of truncation recrcut. Its default value is zero, and it corresponds to take u of size equal to the size of the ngfft grid.

The discretization of the operator T in Eq. (30) requires, specially at high temperatures, a small grid step [83]. We introduces a
double-grid system which permits to compute the local density ρ(ri) on a coarse grid and the tridiagonalization, Eq. (30), on a fine grid.
Successively the density and the recursion coefficients are interpolated on the fine grid by FFT interpolation. The keyword associated to
the double grid system is recgratio representing the ratio between the two grid steps.

4.5. Interfacing with the Wannier90 library

In ABINIT, when using Norm-Conserving Pseudopotentials, the electronic ground state of a periodic solid is represented with Bloch
functions ψk,n at each band n and k-point. An alternative to using Bloch functions is to use Wannier functions Wn(r − R), where R is the
lattice vector of a unit cell [84].

Wannier functions are the solid-state equivalent of “localized molecular orbitals” [85], and thus provide a chemical picture of the
system. It was N. Marzari and D. Vanderbilt who exploited the gauge of freedom of Wannier functions to construct Maximally-Localized
Wannier Functions (MLWFs) [86]. MLWFs have found many useful applications: they are a powerful tool to interpolate generic operators
and they are a minimal localized basis set for large-scale calculations, among others.

A set of N generalized Wannier functions WR,n(r) can be constructed as

WR,n(r) = V 3

2π

∫
B Z

d3k e−ik·R
Nk∑

m=1

U (k)
mnψkm(r) (33)
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from Bloch functions ψkm , where V is the volume of the unit cell and the Nk × N matrices are to be determined. In the case of an isolated
manifold of bands Nk is equal to N and if Nk > N then an additional disentanglement procedure is needed [87].

To construct MLWFs we choose the U (k)
mn matrices that minimize the spread functional Ω ,

Ω =
N∑

n=1

[〈W0n|r2|W0n〉 − ∣∣〈W0n|r|W0n〉
∣∣2]

, (34)

where we refer to the unit cell at the origin, since all sets of Wannier functions are equivalent within a lattice-vector translation, WRn(r) =
W0n(r − R).

As it is shown in Ref. [86] the spread functional Ω can be expressed in terms of U (k)
mn and the overlap matrix:

M(k,b)
mn = 〈

ψkm|eib·r|ψk+bn
〉
, (35)

where b are vectors connecting each k-point to its near neighbors. Having Ω in terms of U (k)
mn and M(k,b)

mn , the gradient of the spread func-
tional can be also obtained from these quantities. Therefore, M(k,b)

mn becomes the principal ingredient used in the algorithm to minimize
the spread.

The minimization algorithm is started from an initial approximation to U (k)
mn . A set of N localized trial orbitals gn(r) is chosen corre-

sponding to some rough initial guess for the MLWFs. This initial guess is given to the algorithm in the form of a Nk × N matrix:

A(k)
mn = 〈ψkm|gn〉. (36)

In short, Wannier90 [16] minimizes the spread Ω with respect to the set of U (k)
mn to obtain MLWFs. The only ingredients needed are

the matrices M(k,b)
mn and A(k)

mn which are provided by ABINIT in a transparent way to the user.
ABINIT builds the M(k,b)

mn matrix after a ground state calculation. In the case of norm-conserving Pseudopotentials it is obtained directly
from Eq. (35) and within the PAW formalism we require some extra terms (see Section 3.4).

We have implemented a set of guiding functions gn to build the A(k)
mn matrices in Eq. (36). We included the full set of features specified

in Tables 3.1, 3.2 and 3.3 of the Wannier90 User Guide, allowing atomic-like orbitals and hybrids to be centered at arbitrary sites and
oriented along arbitrary axes. For the radial part of gn we added Gaussian functions which are faster to compute than the hydrogenic
radial functions listed in Table 3.3. Since the A(k)

mn are just a rough initial guess, we have A(k)
mn = 〈ψ̃km|gn〉 within the PAW approximation

(so far, we have found that this is sufficient and there is no need to compute the inside-sphere contributions).
The input variables related to the Wannier90 interface are just three: prtwant, w90iniproj and w90prtunk. “prtwant” is a flag to

indicate the interface will be used, “w90iniproj” controls the form of the guiding functions gn mentioned above and “w90prtunk” is used
to plot the Wannier functions. There is a secondary input file which is used to set all variables related to the Wannier90 algorithms as
documented in the Wannier90 User Guide. For instance, we can indicate the number of steps in the minimization and the form of the
initial guiding functions, among others.

Guided by the Web site, a newcomer will be able to learn how to use the Wannier90 interface without any external help. We chose
four examples to introduce the user progressively to this interface. In addition, we also provide internal tests (tests/wannier90) with
more advanced capabilities such as the inclusion of GW corrections as explained in Section 6.5.

4.6. Interfacing with the Libxc library

In order to solve the KS equations, an approximation to Exc and vxc is required. Many different approximations exist (we estimate
them to be on the order of 200), but there are usually very few implemented in most computer codes. This means it may be difficult
to reproduce calculations made with other codes, with older functionals, or with state-of-the-art functionals. The fact that each code
implements its own version of a given functional is also a waste of resources and developers time. The Libxc library was born within the
Octopus project [18] as an attempt to solve some of these problems. It does so by providing implementations of as many functionals as
possible in a well tested, robust library. Libxc was written in C from scratch, it includes bindings both in C and in Fortran, and is released
under the GNU Lesser General Public License (version 3.0). Exchange–correlation functionals are usually divided into families according
to the ingredients that are used to calculate Exc [88]. The simplest approximation is the local density approximation (LDA), where Exc
depends only on the electronic density. Generalized gradient approximations (GGA) also depend on the gradient of the electronic density
∇n, while for the meta-GGAs further dependencies on ∇2n and/or on the kinetic energy density τ are added. Hybrid functionals are
constructed by mixing a fraction of the exact exchange with GGA exchange and correlation. Libxc includes by now 19 LDA, 55 GGA,
24 hybrid, and 7 meta-GGA functionals. It is able to return Exc and the necessary quantities to compute vxc, as well as higher order
derivatives of Exc, although the later are not yet available for all the functionals.

In ABINIT it is possible to use the LDA and GGA functionals from Libxc to obtain Exc and vxc. To do so, ABINIT should be compiled
with the Libxc plug-in enabled (configure keyword --enable-libxc from ABINIT 5.8, --enable-etsf-xc in older versions). These
functionals are accessed by negative values of the ixc keyword. The functionals from Libxc can be either exchange-only functionals,
correlation-only functionals, or combined exchange–correlation functionals. Each of them is uniquely identified by an integer ranging from
0 to 999. The absolute value of ixc to be used is obtained by concatenating the identifiers of the two functionals when one uses an
exchange-only with a correlation-only functional, or by just taking the corresponding identifier when one uses a combined exchange–
correlation functional. As an example, let us consider the Perdew–Burke–Ernzerhof GGA. This functional has an exchange part and a
correlation part, whose identifiers are 101 and 130 respectively. Thus, to use this functional, ixc should be set to −101130.

The Libxc interface in ABINIT was tested by comparing results obtained using the native ABINIT functionals with results obtained with
the corresponding Libxc functionals. The spin-unpolarized version of the functionals was tested by running a ground-state calculation of
the helium atom, while the spin-polarized version was tested by running a ground-state calculation of the bismuth atom. The results were
excellent, with an agreement better than 10−6 a.u. in the total energy for most cases. Automatic tests for all the LDA and GGA functionals
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included in Libxc, both in the spin-unpolarized and spin-polarized cases, are provided in the directory tests/etsf_xc for portability
checking purposes.

4.7. Interfacing with the ETSF_IO library

The European Theoretical Spectroscopy Facility (ETSF) has recently normalized a file format to improve the inter-operability of ab initio
codes within its scope [89]. In its 2.2 version, this normalization is focused on crystallographic data, density files and wavefunctions restart
information. Indeed, ABINIT is often used as a starting point for post-ground state calculations. In these cases, the converged wavefunctions
and the description of the basis-set are saved in a _KSS file and can be used as input for GW calculations in GWST [90] for instance or
can be used to process excited states with e.g. Yambo [14]. The interoperability goal of the ETSF file format should also make possible
the exchange of restart files between codes doing the same kind of calculations to help cross-checking the results. As a final point, the
technology suggested by the ETSF to implement this file format, namely NetCDF [10,91], can bring the guarantee of platform independence
to ABINIT, as well as backward-compatibility and extendability for its own output files.

To help the adoption of this normalized file format, a Fortran90 library has been developed. This library, called ETSF_IO [11], is code-
independent and gives routines to easily read and write NetCDF files in accordance to the specifications. This library is used by ABINIT for
crystallographic information, the density (namely the _DEN file) and wavefunctions (the _WFK file) data, and the _KSS file, which is used
as a starting point for excited-state calculations in time-dependent DFT or the GW approximation.

ETSF_IO is added as a plug-in and enabled at configure time with the configure keyword -enable-etsf-io. It requires a valid
Fortran implementation of NetCDF. Output files are generated using this format when the ABINIT input keyword accesswff is set to 3 (as
a reminder, 0 corresponds to the ABINIT Fortran binary format, 1 switches to the use of MPI/IO in a parallel run and 2 is used to generate
ABINIT binary files with NetCDF). All generated files have names appended with ‘-etsf.nc’.

In addition to the implementation of the ETSF file format through the ETSF_IO library in the main executable of the ABINIT package,
one option has been added to the executable cut3d to be able to read the density files written in this new file format. This is the
option 2 when cut3d asks for the file format.

To ensure the stability of this IO feature, ten automatic tests have been written in the tests/etsf_io/ subdirectory of the source
tree, checking density output, cut3d reading of densities, KSS generation and wavefunctions write and restart (in the wavelet formalism).

5. Developments in linear and non-linear responses

5.1. Electron–phonon coupling

Many everyday phenomena demonstrate the coupling of electrons to vibrations in crystals. Finite temperature effects, such as Raman
spectral shapes, thermal and electrical resistivity or the band gap (see Section 5.2), and superconductivity, depend intricately on the
coupling between electrons and phonons (EPC). The subject of electron–phonon coupling is well reviewed in Grimvall [93], and Allen and
Mitrović [94]. The formalism in ABINIT follows broadly Savrasov and Savrasov [95].

Here we describe the implementation in ABINIT, the associated variables and workflow, and one application. The calculation of
EPC is the subject of the doc/tutorial/telphon.html tutorial in ABINIT. For a phonon of wavevector q and mode j, let dqj
be its displacement vector, and ωqj its frequency. The matrix elements of the coupling between electrons and phonons are mki,k+qi′ =
〈k + qi′|∇V |ki〉, with |ki〉 an electronic state in band i, and ∇V the potential perturbed by atomic displacements.

In an ABINIT phonon calculation, the input keyword prtgkk should be set to 1 in order to output the matrix elements, in files suffixed
_GKKx, where x is the index of the perturbation. To ensure all the needed perturbations are calculated, prepgkk should be set to 1. The
symmetry operations may be used to complete the q-points in the irreducible Brillouin Zone. It is required that the grid of k contain the
Γ point, and that the grid of q be a sub-grid of the k (e.g. 2×2×2 q and 4×4×4 k). Once the matrix elements have been calculated, the
_GKK files are merged by the mrggkk utility. All perturbations at a given q-point must be grouped together.

Analyzing electron–phonon quantities
The spectral representation of the phonon self-energy is given by the Eliashberg function α2 F (Ω) = N F

∑
jkik′ i′ |dqj · mkik′ i′ |2δ(Ω −

ωqj)δ(εki)δ(εk′ i′ ) where q = k−k′ and N F is the density of states at the Fermi level E F . The integrand contains δ(εki)δ(εk′ i′ ), which requires

a very dense grid of k-points. The interaction with the electrons gives an expression for the phonon linewidth γ
j

q = 1/2ωqj
∑

kii′ |dqj ·
mkik+qi′ |2.

anaddb interpolates mkk+q onto the ground state k-point grid by Fourier transform. The interpolated object here is a product of m at
a given q:

γ̄
κακ ′β

kik+qi′ = (
mκα

kik+qi′
)†

mκ ′β
kik+qi′ , (37)

where the κ label atoms in the unit cell and α,β Cartesian directions. As can be seen, γ̄ eliminates all phase factors due to wavefunctions,
by construction. γ̄ (κακ ′β) can be symmetrized and interpolated in the same way as the dynamical matrix, although formally the m are
not proper objects for interpolation [96], in particular due to crossings of electronic bands.

The main analysis is performed in anaddb, setting elphflag variable to 1. Most of the procedure is automatic, but can be lengthy if
a large number of k-points is being used. The nqpath and qpath variables must be set, specifying a path in reciprocal space. anaddb
generates files containing the phonon linewidths (suffixed _LWD) and frequencies ωqj (suffixed _BST) along qpath. One can calculate the
nesting function n(q) = ∑

kii′ δ(εki)δ(εk+qi′ ) by setting prtnest to 1 (output to _NEST).
After interpolation, the quantities must be integrated over the Fermi surface. Several quadrature methods are available. The de-

fault (telphint=1) is to use Gaussian weighting, with a width telphsmear. Another option is the improved tetrahedron method [97]
(telphint=0). Finally (telphint=2), one can integrate a given set of electron bands, between ep_b_max and ep_b_min. The resulting in-
tegrated quantities are the Eliashberg function (in a file suffixed _A2F), and the EPC strength λ which is printed in the main output
file.
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Fig. 5. Eliashberg spectral functions (dimensionless) of nanowires of Al, as a function of frequency (in cm−1). The left function is that of a straight Al wire, the middle of a
zigzag wire with bond angles of ∼60◦ . The right-hand panel is for a stretched zigzag wire, where all phonon modes have been stabilized. Huge size and structural effects
appear in the electron–phonon coupling, covering several orders of magnitude. Adapted from Ref. [98].

The calculation of bulk transport quantities (electrical and thermal conductivities) is possible using anaddb. Analogous quantities
are obtained from the conducti post-processor, but due to electron–electron scattering, instead of electron–phonon. A preliminary
calculation of the derivatives of the wavefunctions with respect to k-vector must be carried out. The transport calculation is turned on
by setting ifltransport to 1 in anaddb. The transport quantities depend on the Fermi velocity for each band, and the electronic band-
dependence of the matrix elements must be preserved before integration, by setting tkeepbands to 1. This increases the memory used,
by the square of the number of bands crossing E F . The results are the transport Eliashberg function (in file _A2F_TR), the electrical
resistivity (in file _RHO), and the thermal conductivity (in file _WTH).

Tests inputs in files tests/v5/Input/t85.in to t99.in concern electron–phonon calculations and transport.
A number of applications have been published calculating electron–phonon coupling using ABINIT. The coupling in one-dimensional

systems (nanowires) has been studied in Refs. [98] and [99]. In the former we demonstrate changes in the coupling due to nanostructural
effects. Fig. 5 shows the Eliashberg functions for atomic wires of Al, and huge variations of the EPC for wires which have a zigzag shape.

5.2. Temperature-dependence of the band gap

Consider a crystal with atoms labeled by κ which occupy sites R(lκ) and have displacements u(lκ) from the equilibrium, where l labels
the unit cells. The displacement vectors u are time dependent, they can be written as a Fourier series using the phonon frequencies.
However, in the adiabatic approximation, one neglects this temporal dependence and treats uκ,α as a parameter. The systems is now
reduced to a statically perturbed lattice, within an error of the order of (m/M)1/2 (electron to atom mass ratio). To second order in u, the
energy change of the eigenvalue εkn is given by �εkn = ∑

αlκ,βl′κ ′ ε
(2)

kn uα(lκ)uβ(l′κ ′), where the second-order eigenvalue, ε
(2)

kn is obtained
by:

ε
(2)

kn = 1

2
〈kn| ∂2 V

∂ Rα(lκ)∂ Rβ(l′κ ′)
|kn〉 +

∑
k′n′

〈kn| ∂V
∂ Rα(lκ)

|k′n′〉〈k′n′| ∂V
∂ Rβ (l′κ ′) |kn〉

εkn − εk′n′
. (38)

The first term in Eq. (38) corresponds to the first order expansion of the Debye–Waller factor [100], representing the lowest order phonon
screening of the ionic potential. The full Debye–Waller theory is equivalent to doing infinite even-order perturbation theory. The second
term in Eq. (38) is the adiabatic approximation to the Fan theory [101], i.e. where the phonon energies have been neglected in the
denominators. This contribution corresponds to a self-energy in the quasiparticle framework and is frequently referred as the self-energy
contribution.

Allen and Heine [102] where the first to discuss the properties of these corrections in the case of the long wavelength acoustic
modes. The condition of translational invariance requires that the eigenvalues are unaffected if every atom in the crystal is displaced by a
uniform displacement vector u. This implies a relation between the elements of the Debye–Waller contribution and the self-energy matrix
elements. Using the rigid-ion approximation, in which the non-diagonal Debye–Waller elements are neglected, this has enabled Allen
and Heine to entirely eliminate the use of second-order Hamiltonians, thus considerably simplifying the formalism for semi-empirical
calculations. Finally, performing a Fourier transform to the phonon representation, using Bloch’s theorem and the orthogonality relations
between the phonon displacement vectors, we obtain that �εkn(T ) = ∑

Q j
∂εkn
∂nQ j

[nQ j(T ) + 1/2], where Q is a phonon wavevector, j labels

a phonon branch and nQ j(T ) is the Bose–Einstein distribution. The real part of the coefficient ∂εkn
∂nQ j

contributing to the energy shift is the

sum of the Debye–Waller and Fan parts,

∂εkn

∂nQ j
=

[
∂εkn

∂nQ j

]
DW

+
[

∂εkn

∂nQ j

]
Fan

, (39)

and their explicit expression is given in Eqs. (3) and (4) of Ref. [103].
The above results have been derived using normal perturbation theory and have been used in many semi-empirical calculations [102–

105] to model the temperature dependence of tetrahedral semiconductors. In the context of modern Density-Functional Theory (DFT)
calculations, these eigenvalue shifts must be revisited from the point of view of adiabatic Density-Functional Perturbation Theory [106]. It
results in a reformulation of the second-order eigenvalue:

ε
(2)

kn = 1

2
〈kn| ∂2 V

∂ Rα(lκ)∂ Rβ(l′κ ′)
|kn〉 + 〈

ψ
(1)

kn,αlκ

∣∣ ∂V

∂ Rβ(l′κ ′)
|kn〉 + 〈kn| ∂V

∂ Rα(lκ)

∣∣ψ(1)

kn,βl′κ ′
〉

+ 〈
ψ

(1)

kn,αlκ

∣∣H (0) − εkn
∣∣ψ(1)

kn,βl′κ ′
〉 − N∑

k′n′

〈kn| ∂V
∂ Rα(lκ)

|k′n′〉〈k′n′| ∂V
∂ Rβ (l′κ ′) |kn〉

εkn − εk′n′
. (40)
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The main effect of this new formalism is the splitting of the Fan contribution into multiple terms. The last of which as the same form as
before, but now the sum is limited to the N occupied bands. The new terms, which include first-order wavefunctions that are orthonormal
to the occupied states, are the conduction band contributions to the energy shifts. It is this equation which is used in the current version
of the ABINIT package to calculate the second-order eigenvalues. The first order wavefunctions are calculated self-consistently using a
variational procedure.

Calculation of the second-order electronic eigenvalues (abinis: ieig2rf 1)
The above mentioned DFPT formalism was coded in the ABINIT package. It is activated by setting the variable ieig2rf (Integer for

second-order EIGvalues from Response Function) to 1. This will trigger the production of a file, named with the extension _EIGR2D,
containing the second-order electronic eigenvalues for the perturbation.

Post-processing using anaddb (anaddb: thmflag 3, telphint 0 or 1)
An actual calculation will usually involve many perturbations, i.e. many phonon wavelengths, and thus involves the creation of many

_EIGR2D files. A simple post-processing code (mrgddb) can validate the consistency of these files, verifying that they correspond to
calculations using the same parameters, and handle their merging into one single file.

The thermal corrections to the electronic eigenvalues can be computed using the anaddb post-processing code, by setting the variable
thmflag to 3. In that case, the code will read the second-order electronic eigenvalues, specified at input as the electron–phonon matrix,
and calculate all the quantities in Eq. (39). By setting the variable telphint to 1, the user can choose to use the improved tetrahedron
method interpolation scheme.

Automatic tests
The implementation of this formalism is tested with four automatic tests, one for each of the steps required to output the thermal

corrections. These tests are located in the tests/v5 directory, tests t26.in, t27.in, t29.in and t30.in. They focus on the thermal
properties of the direct gap of silicon. They reproduce the results found in Ref. [104] if converged parameters are used. These files can be
consulted as reference to produce input files for other systems.

5.3. Raman intensities and electro-optic properties

In Raman experiments, the incident light, usually a polarized or unpolarized laser, is scattered by the sample, and the energy as well
as polarization of the outgoing light is measured. A Raman spectrum, presenting the energy of the outgoing photons, will consist of rather
well-defined peaks, around an elastic peak.

At the lowest order of the theory, the dominant mechanism is the absorption or emission of a phonon by a photon. The energy
of the absorbed or emitted phonon corresponds to the energy difference between the outgoing and incident photons. Thus, even more
straightforwardly than the IR spectrum, a Raman spectrum is directly related to the energy of phonons at the Brillouin-zone center: when
the zero of the energy scale is set at the incident light energy, the absolute value of the energy of the peaks corresponds to the energy of
the phonons.

The Raman intensity of a specific mode is determined by the specific Raman scattering efficiency (S) via a prefactor that includes the
frequency of the incoming photon, ω0, the frequency ωm of the phonon m and the temperature, T . Its full expression is [107,108]:

dS

dΩ
= (ω0 − ωm)4

c4

∣∣es.α
m.e0

∣∣2 h

2ωm
(nm + 1) (41)

where the dependency on temperature is given by the boson factor:

nm = 1

eh̄ωm/kB T − 1
(42)

and the Raman tensor:

αm
ij = √

Ω0

∑
κβ

∂χ
∞(1)
i j

∂τκβ

ηm(κβ) (43)

is related to the derivative of the linear electronic dielectric susceptibility tensor χ
∞(1)
i j with respect to the set of atomic displacements

τκβ associated to the phonon eigendisplacement vector ηm(κβ). The |es.α
m.e0| term in Eq. (41) gives the coupling between the incoming

phonon with polarization e0, the crystal, characterized by a Raman tensor αm and the scattered phonon with polarization es .
For non-centrosymmetric crystals, some modes are active in both Raman and infrared. In this case, the same formalism as above holds

for the TO modes (E = 0), while a supplementary correction, arising from the macroscopic electric field generated by the polar lattice
vibration, is needed for the modes in LO geometry (D = 0). In this case, the Raman tensor becomes:

∂χ
∞(1)
i j

∂τκβ

∣∣∣∣
D=0

= ∂χ
∞(1)
i j

∂τκβ

∣∣∣∣
ε=0

− 8π

Ω0

∑
l Z∗

κ,βlql∑
ll′ qlε

∞
ll′ q′

l

∑
l

χ
∞(2)

i jl ql, (44)

where Z∗ is the Born effective charge tensor, ε∞ is the optical dielectric constant and χ∞(2) is the non-linear optical dielectric suscepti-
bility. Quite often, experimental data are recorded using polarized or unpolarized lasers on powder samples. If we neglect surface effects
on the Raman tensor, an approximation that is valid for meso- and macro-crystals, then the resulting Raman spectra can be obtained by
performing averages over all possible orientations of the crystal and over all possible laser polarizations. The latter part is equivalent to
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summing up over the parallel and perpendicular laser polarizations. The averages over all possible crystal orientations for TO modes are
given by [109–113]:

G0 = (αxx + αyy + αzz)
2

3
,

G1 = (αxy − αyz)
2 + (αyz − αzx)

2 + (αzx − αxy)
2

2
,

G2 = (αxy + αyz)
2 + (αyz + αzx)

2 + (αzx + αxy)
2

2
+ (αxy − αyy)

2 + (αyy − αzz)
2 + (αzz − αxx)

2

3
.

The intensities are then:

Ipowder
‖ = C(10G0 + 4G2),

Ipowder
⊥ = C(5G1 + 3G2),

Ipowder
total = Ipowder

‖ + Ipowder
⊥ .

Both the derivatives of the linear electronic dielectric susceptibilities with respect to atomic displacements and the non-linear electronic
dielectric susceptibilities required to evaluate the Raman intensities are non-linear responses which can be formulated as third deriva-
tives of the energy. In the ABINIT implementation, they are computed within the density functional perturbation theory, as described in
Ref. [107]. Thanks to the 2n + 1 theorem, their formulation only requires the knowledge of the ground-state and first-order changes in the
wavefunctions.

This non-linear response formalism has been successfully applied to a large variety of systems. We have so far studied the Raman
spectra of ferroelectric oxides (LiNbO3 [114], BaTiO3 and PbTiO3 [115]), different minerals under pressure conditions characteristic to the
interior of the Earth [113,116,117], organic crystals (oligothiophenes [118]) and molecular solids under extreme conditions [119,120]. The
ABINIT implementation also serves to build the WURM database of computed Raman spectra for minerals [121]. Although the present
implementation is restricted to non-spin-polarized cases, the Raman intensities of magnetic systems is nevertheless accessible using a
finite difference technique, as recently illustrated on the prototypical multiferroic BiFeO3 [122,123]. The computation of the non-linear
optical susceptibilities has also been applied to several polar dielectrics [124].

As a by-product of the calculation of the Raman tensor and non-linear optical coefficients, it is also possible to determine directly within
ABINIT the electro-optic (EO) coefficients ri jγ (Pockels effect) which describe the change of optical dielectric tensor in a (quasi-)static
electric field through the following expression [107]:

�
(
ε−1)

i j =
3∑

γ =1

ri jγ Eγ . (45)

The clamped (zero strain) EO coefficients include an electronic and an ionic contribution directly accessible within ABINIT. The unclamped
EO coefficients include an additional piezoelectric contribution which must be computed separately from the knowledge of the elasto-optic
and piezoelectric strain coefficients. This formalism was for instance applied to different ferroelectric ABO3 compounds [125,126].

A tutorial for the computation of non-linear responses is provided in doc/tutorial/lesson_nlo.html.

6. Developments in excited state calculations

6.1. Hedin’s equations and the GW approximation

DFT performs reasonably well for the determination of structural properties, but fails to predict accurate band gaps. A more rigorous
framework for the description of excited states is provided by Many-Body Perturbation Theory (MBPT) [127,128], based on the Green’s
functions formalism and the concept of quasi-particles [129]. Within MBPT, one can calculate the quasi-particle (QP) energies, E , and
amplitudes, Ψ , by solving the non-linear equation[

T + v H [n](r1) + vext(r1)
]
Ψ (r1) +

∫
Σ(r1, r2; E)Ψ (r2)dr2 = EΨ (r1), (46)

involving the non-Hermitian, non-local and frequency dependent self-energy operator Σ . Eq. (46) goes beyond the mean-field approxima-
tion of independent KS particles as it accounts for the dynamic many-body effects in the electron–electron interaction. In principle, the
exact self-energy can be obtained by solving self-consistently the set of coupled integro-differential equations proposed by Hedin [3]. The
fundamental building blocks of Hedin’s equations2 are, besides Σ(1,2), the Green’s function of the interacting many-body system, G(1,2),
the Green’s function of an appropriate non-interacting system, G0(1,2), and the irreducible polarizability, χ̃ (1,2), which, through the
inverse dielectric matrix ε−1(1,2), re-normalizes the static Coulomb potential, v(1,2) = δ(t1−t2)

|r1−r2| , resulting in the dynamical screened in-

teraction W (1,2) = ε−1(1,3)v(3,2). Finally, the vertex function Γ (1,2,3) describes the interactions between virtual holes and electrons.
The left panel of Fig. 6 shows how the various physical quantities are interrelated.

The practical solution of Hedin’s equations is extremely complicated: they contain a functional derivative in Γ , whose direct evaluation
is challenging. A tractable approach is provided by the so-called GW method [3], which consists in approximating Γ as a local and

2 Henceforth, the following conventions are used. The natural number (1) is a contracted notation for the space–time coordinates (r1, t1) with 1+ ≡ (r1, t1 + η)η→0+ .
Repeated indices are integrated over, unless they appear on both sides of the equation.
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Fig. 6. Left panel: Graphical representation of Hedin’s equations. Right panel: The four coupled integro-differential equations involved in the GW approximation. G0 W0

corresponds to a single iteration of the “loop”.

instantaneous function, i.e. Γ GW(1,2,3) = δ(1,2)δ(1,3), giving the relatively simpler set of four self-consistent equations depicted in the
right panel of Fig. 6. In the first iteration, one starts with Σ = 0, and G is approximated with the Green’s function, G0, of an appropriate
non-interacting system (in ABINIT, the KS system). The polarizability is hence given by the expression χ̃ (1,2) = −iG0(1,2)G0(2,1+),
and the screened interaction W (1,2) = ε−1(1,3)v(3,2) is obtained using the dielectric matrix of the auxiliary KS system i.e. ε(1,2) =
δ(1,2) − v(1,3)χ̃ (3,2). The new self-energy, Σ(1,2) = iG(1,2)W (1+,2) is constructed, and Eq. (46) is solved obtaining a new set of
QP energies and amplitudes. Ideally, the GW loop should be iterated to self-consistency, but most applications use the so-called G0W0
approach in which only a single iteration is performed. Indeed, numerically costly self-consistent GW calculations were reported to worsen
the results when compared to the relatively cheap G0W0 method [130,131].

Solving Eq. (46) for a given self-energy is not an easy task since it requires the knowledge of the frequency dependence of Σ . A simple,
albeit accurate, solution for the QP energies can be obtained using first-order perturbation theory, considering vxc as a static, local and
Hermitian approximation to the true non-local and energy dependent Σ [132]. Following the perturbative approach, the QP energies are
obtained as{

εQP = εKS + Z〈Ψ KS|Σ(εKS) − vxc|Ψ KS〉,
Z = [

1 − 〈Ψ KS| ∂Σ(ε)

∂εKS |Ψ KS〉]−1
.

(47)

A typical GW calculation consists of two different steps (following a DFT calculation): first ε−1 is calculated and stored on disk
(optdriver=3), then the KS band structure and W are used to evaluate the matrix elements of Σ , finally obtaining the QP correc-
tions (optdriver=4). We refer the reader to the two GW tutorials, lesson_gw1.html and lesson_gw2.html, in doc/tutorial,
where a complete description of the entire procedure to be followed to obtain the QP band gap of silicon and the QP band structure of
aluminum is extensively discussed.

6.2. Plasmon pole models or direct calculation of the frequency integral

In the frequency domain, the GW self-energy is given by the convolution

Σ(ω) = lim
δ→0+

i

2π

∫
dω′ eiω′δG(ω + ω′)W (ω′), (48)

whose evaluation, in principle, requires the knowledge of the frequency dependence of W (ω′). Due to the ragged behaviour of G(ω) and
W (ω) along the real axis, a fine grid of real frequencies is in principle required to converge the results. ABINIT provides two different, more
effective, techniques to evaluate Eq. (48): (i) integration with a plasmon-pole model (PPM) and (ii) integration with contour deformation
(CD). In the former case, the frequency dependence of ε−1(ω) is modeled with a simple analytic form, and the frequency convolution is
carried out analytically. In the latter approach, the integral is evaluated numerically extending the functions in the complex plane in order
have a smoother integrand.

Four different plasmon pole models (PPMs) are available in ABINIT. The choice of the particular PPM to be used is controlled by the
variable ppmodel. For examples of use of the PPM technique, see tests/v3/t30.in and tests/v3/t31.in. The first two options
(ppmodel=1, 2) refer to approximations employed in the pioneering implementations of the GW formalism: the plasmon-pole models of
Godby–Needs [134] (GN) and Hybertsen and Louie [132] (HL). In both cases the imaginary part of the ε−1(ω) is approximated in terms
of a delta function centered at the plasmon frequency ω̃G1G2 (q) with amplitude AG1G2 (q), i.e.

�ε−1
G1G2

(q,ω) = AG1G2(q)
[
δ
(
ω − ω̃G1G2(q)

) − δ
(
ω + ω̃G1G2(q)

)]
. (49)

The real part is then obtained by means of the Kramers–Kronig relation

�ε−1
G1G2

(q,ω) = δG1G2 + Ω2
G1G2

(q)

ω2 − ω̃2
G1G2

(q)
, (50)

where Ω2
G1G2

(q) = −AG1G2 (q)ω̃2
G1G2

(q). Eq. (49) is a reasonable approximation since experiments and first-principles analysis reveal that
�W (ω) is generally characterized by a sharp peak in correspondence to a plasmon excitation at the plasmon frequency. At this point, one
defines a set of physical constraints to find the parameters entering Eqs. (49) and (50). In the GN approach (ppmodel=1), the parameters
of the model are derived such that ε−1(ω) is correctly reproduced at two different frequencies: the static limit and an additional imaginary
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point located at the Sommerfeld plasma frequency iωP, where ωP = √
4πρ with ρ the number of electrons per volume [135]. After some

algebra, the following set of equations defining the plasmon-pole coefficients can be derived:⎧⎪⎪⎨⎪⎪⎩
AG1G2(q) = ε−1

G1G2
(q,ω = 0) − δG1G2 = −Ω2

G1G2
(q)

ω̃2
G1G2

(q)
,

ω̃2
G1G2

= ωP
2
[ AG1G2 (q)

ε−1
G1G2

(q,ω=0)−ε−1
G1G2

(q,iωp)
− 1

]
.

(51)

In the HL model (ppmodel=2), the PPM parameters are calculated so as to reproduce the static limit exactly and to fulfill a generalized
f -sum rule relating the imaginary part of the many-body ε−1 to the plasma frequency and the charge density [136,137]. The final
expression for the PPM parameters can be found in [132].

Models based on Eqs. (49) and (50) have a number of undesirable features, despite their success. The total number of poles is large
since it is equal to the square of the number of planewaves used to represent ε−1

G1G2
(q,ω), so expensive tables of N2

G elements have to be
stored in memory during the entire calculation. Moreover, for some elements with G1 �= G2, the plasmon poles ω̃G1G2 (q) can become very
small or even imaginary which is somewhat unphysical [132]. ABINIT provides two more recent PPM approaches due to Von der Linden
and Horsch [138] (vLH) and Engel and Farid [139] (EF), which are computationally more efficient and expected to be more accurate. The
vLH plasmon-pole model with NG parameters is derived starting from the spectral decomposition of the symmetrized inverse dielectric

matrix ε̃−1
G1G2

(q,ω) ≡ |q+G1|
|q+G2|

−1
ε−1

G1G2
(q,ω) [138] by assuming that the frequency dependence is solely contained in the eigenvalues (see

Ref. [138]). The disadvantage of the vLH approach is that it satisfies the f -sum rule only for the diagonal elements. In the EF plasmon-
pole model, also with NG parameters, eigenvalues and eigenvectors are frequency dependent, and derived from an approximation to the
reducible polarizability, χ(1,2) ≡ δn(1)

δvext(2)
[139], which is exact both in the static- and high-frequency limit. For further details on this

plasmon-pole technique, see Ref. [139].
Since the frequency convolution in Eq. (48) can be carried out analytically once the plasmon-pole parameters are known, the PPM

technique is the ideal tool for initial convergence studies. Besides it usually proves to be accurate to within 0.1–0.2 eV for states close
to the Fermi level, when compared to results obtained with a costly numerical integration of Σ [140]. On the other hand, the accuracy
worsens for states far from the gap, especially for low-lying states To analyze these physical properties, it is necessary to avoid PPM
methods, and calculate explicitly the frequency dependence of W (ω) as described now.

A straightforward numerical evaluation of Eq. (48) is problematic due to the fact that G and W both have poles infinitesimally above
and below the real axis.Therefore a naive integration algorithm along the real axis would need to evaluate the integrand precisely in the
region where it is ill-behaved. ABINIT proposes an alternative route to evaluate Eq. (48), which traces back to the earliest GW calculations
for the homogeneous electron gas [141]. The Green’s function G and the screened Coulomb interaction W are analytic functions (except
along the real axis) and can consequently be analytically continued to the full complex plane. The strategy is to use a deformation of the
contour of integration in order to avoid as much as possible having to deal with quantities close to the real axis. Instead of evaluating
the integral along the real axis, one evaluates the integral along the imaginary axis, and then adds the residues arising from the poles
enclosed in the contour.

The contour deformation technique is activated by setting the input variable gwcalctyp to 2. The integration along the imaginary axis
requires the calculation of ε−1(ω) for purely imaginary frequencies. The frequency mesh for the quadrature is governed by the input vari-
able nfreqim, and can be very coarse since the integrands is very smooth in this region. The evaluation of the residue of the poles requires
the calculation of ε−1(ω) on a fine mesh along the real axis. This regular mesh, sampling the interval [0,+∞], is defined by the two input
variables nfreqre and freqremax. For examples of the contour deformation technique, see tests/v4/t84.in, tests/v4/t85.in, and
tests/paral/tU.in. The CD approach requires many evaluations of ε−1(ω) and can therefore be computationally highly demanding.
On the other hand, it is the preferred approach for calculating the QP correction of low-lying states. Moreover, it is the only technique
available in ABINIT to compute the imaginary part of Σ(ω) and the spectral function A(ω) = | 1

π �G(ω)|.

6.3. Self-consistent Hartree–Fock, screened exchange, COHSEX, or GW

Following the original recipe of Hybertsen and Louie [132], the GW self-energy is usually constructed starting from a KS band-structure
calculation, and the QP corrections are calculated using the perturbative approach described in Section 6.1. This procedure has been shown
to be very efficient [140], but several questions arise. How much does the G0W0 result depend of the starting point? What happens if
the starting KS band structure is qualitatively wrong? A self-consistent GW self-energy calculation should be free of such criticisms.
However, the self-consistency in GW is everything but straightforward, since Σ , being non-Hermitian and energy-dependent, should have
left and right energy-dependent eigenvectors. In practice, this is not tractable without approximation. Furthermore, fully self-consistent
GW calculations worsen the results obtained with the standard one-shot G0W0 method.

A different approach to the self-consistency issue is the self-consistent quasi-particle GW approximation (SCqpGW) proposed by Faleev
and co-workers [142–144]. SCqpGW employs a perturbation theory constructed around some initial single-particle Hamiltonian (for in-
stance the Hartree Hamiltonian), and uses a self-consistent procedure to determine an optimal non-interacting Hamiltonian given by

hSCqpGW(r1, r2) = −1

2
∇2 + v H [n](r1) + vext(r1) + Σ̃(r1, r2), (52)

with the true self-energy approximated via a static and Hermitian operator Σ̃(r1, r2) constructed according to

Σ̃k
i j ≡ 1

2
Herm

[
Σk

i j(εik) + Σk
i j(ε jk)

]
, (53)

In the above equation, Herm means that only the Hermitian part of the matrix is considered. Then the approximated self-energy, Σ̃ , is
diagonalized obtaining a new set of orthogonal QP amplitudes and real-valued QP energies. From this new set of orbitals, a new density
and the corresponding v H [n] is generated, a new Σ̃ is constructed and the procedure is iterated to self-consistency. The SCqpGW approach
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improves the G0W0 results, giving band gaps very close to experiments with errors that are small and highly systematic [143]. Following
the same spirit, Bruneval and coworkers [133] proposed to use an alternative Hermitian and static approximation to the GW self-energy:
the COHSEX approximation already derived by Hedin in 1965 [3]. The COHSEX is a simple approximation that consists of two terms: the
COulomb Hole and the Screened EXchange. These terms do not involve any summation over empty states. Performing self-consistency
within the COHSEX approximation is hence more tractable than within the GW self-energy of Faleev and coworkers, although the COHSEX
self-energy may be a cruder approximation than Σ̃ .

These two methods are implemented in ABINIT. The corresponding input variable gwcalctyp has two digits. The first digit states the
self-consistency type: 0 means no self-consistency, 1 self-consistency on eigenvalues only, 2 full self-consistency on wavefunctions and
eigenvalues. The second digit governs the type of calculation: 5 stands for Hartree–Fock, 6 for screened exchange, 7 for COHSEX, 8 for
Faleev’s method with plasmon-pole model, 9 for Faleev’s method with contour deformation technique.

Diagonalizing the operator in Eq. (52) in the reciprocal space representation would not be practical as the calculation of Σk
G1G2

scales
with the fourth power of the number of atoms [132]. The computational effort can be reduced significantly if a finite number of KS
eigenstates is employed to describe the QP amplitudes. In most cases, the KS wavefunctions are not so different from the QP amplitudes,
hence, KS states are expected to constitute an accurate basis set for the solution of the problem. As a consequence, after the diagonalization
of Eq. (52), the QP amplitudes, |Ψ QP

mk〉, are expressed as linear combination of the KS states, |Ψ KS
nk 〉, used to initialize the first iteration of

the cycle:∣∣ΦQP
mk

〉 = ∑
n

Uk
mn

∣∣Ψ KS
nk

〉
, (54)

where Uk is a unitary matrix. The size of the KS basis set used to represent the new wavefunctions is governed by the input variable
bdgw, which consists of two integers defining the range of KS states to be included at each k-point. Several sample test files demonstrate
how to use the different self-consistent approaches: see the example input files t86.in, t87.in, t88.in in directory tests/v4/,
and the parallel tests paral/tO.in, paral/tV.in in tests/paral/.

6.4. The GW approximation with PAW

For several decades, thanks to the excellent agreement obtained with respect to experiments, pseudopotential-based methods have
represented a de facto standard for MBPT calculations. In recent years, however, results obtained with all-electron (AE) approaches [144,
145] have revealed that a fully consistent treatment of the electronic degrees of freedom produces GW band gaps that are systematically
smaller than pseudopotential (PP) results, thus worsening the agreement between G0W0 and experiments. These findings have led to
quite an intense debate in the scientific literature concerning the reliability of the PP approach for MBPT calculations, see Refs. [146–148].

The PAW formalism, discussed in Section 3.1, represents a flexible and efficient alternative to the use of pseudopotentials for the
solution of the GW equations. It constitutes a full potential method which gives direct access to the true single-particle wavefunction with
the correct nodal shape in the atomic regions. This allows for an accurate description of physical quantities or matrix elements sensitive
to the nuclear region. In what follows, we only discuss how the implementation of the GW equation has to be generalized to include the
PAW method.

Within the PAW formalism, the oscillator strengths – the basic ingredients required to evaluate χ̃0(ω), and the matrix elements of
Σ(ω) – can be obtained by means of the following equation [149]:

〈Ψb1k−q|e−i(q+G)·r|Ψb2k〉 = 〈Ψ̃b1k−q|e−i(q+G)·r|Ψ̃b2k〉 +
∑

i j

〈Ψ̃b1k−q|p̃i〉〈p̃ j|Ψ̃b2k〉

× e−i(q+G)·Ri
[〈φi|e−i(q+G)·(r−Ri)|φ j〉 − 〈φ̃i|e−i(q+G)·(r−Ri)|φ̃ j〉

]
,︸ ︷︷ ︸

4π
∑

lm(−i)lYl
m(̂q+G)Glm

limi l jm j

∫
jl(|q+G|r)(φni li

φn j l j
−φ̃ni li

φ̃n j l j
)dr

(55)

where the planewave has been expressed terms of Bessel functions jl(x) and real spherical harmonics Y l
m (̂G) via the Rayleigh expansion.

The symbol Glm
limil jm j

is used to denote the Gaunt coefficient [150]. The last point worth discussing concerns the core-valence decoupling

in a PAW formalism based on the frozen core approximation. When a perturbative approach is used to calculate QP corrections, the
appropriate exchange–correlation (XC) contribution due to the valence has to be subtracted out from the Σ constructed from the valence
electrons. The simplest approach to the core-valence decoupling consists in assuming that the core-valence exchange–correlation (XC) and
core-polarization contribution of a valence state is given by [132]:

〈Ψ |vcore-val
xc |Ψ 〉 ≈ 〈Ψ |vxc[nv + nc]|Ψ 〉 − 〈Ψ |vxc[nv ]|Ψ 〉. (56)

In this case, the valence-electron XC contribution is removed from the valence self-energy according to 〈Ψ |Σ − vxc[nv ]|Ψ 〉 where
vxc[nc + nv ] = vxc[nc] + vxc[nv ] has been implicitly assumed. A typical input file showing how to run GW calculations with PAW can
be found in tests/v5/t66.in.

6.5. Interpolation of GW band structure

The exact evaluation of the GW band structure along different symmetry lines in the Brillouin zone can be an extremely demanding
task. At the end of a GW calculation we usually end up with the GW eigenvalues at a uniform mesh of k-points, which is exactly what we
need to construct Maximally-Localized Wannier Functions (MLWFs). Thus, it becomes natural to employ MLWFs to interpolate GW band
structures.
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Given a set of LDA or GW eigenvalues, εnk , calculated on a homogeneous grid of k-points, we express the Hamiltonian H (k)
mn = εnk in

the Wannier gauge representation,

HW
mnk =

N∑
i=1

(
U (k)

im

)†
U (k)

in εnk, (57)

where U (k)
mn are the matrices that minimize the spread of the Wannier Functions (see Section 4.5).

We then obtain the Hamiltonian in real space using a discrete Fourier transform,

HW
mnR = 1

Nk

∑
k

e−ik·R HW
mnk, (58)

where Nk is the number of k-points in the mesh.
Assuming that |HW

mnk| to decay fast with |R|, we apply an inverse Fourier transform to calculate the Hamiltonian at any arbitrary k′
point,

HW
mnk′ =

∑
R

eik′·R HW
mnk. (59)

The final step is to diagonalize HW
mnk′ to find the interpolated energies εnk′ .

GW or LDA band structure interpolation based on MLWFs is a highly accurate method because it preserves valuable information about
band connectivity. Hence, band crossings, avoided crossings and degeneracies are treated correctly at a low computational cost [151,152].

In the LDA case, ABINIT constructs MLWFs passing to Wannier90 the LDA wavefunctions ψLDA
nk and the LDA eigenvalues εLDA

nk in the
full irreducible Brillouin zone as explained in Section 4.5. Then, one uses the post-processing tools of Wannier90 to interpolate the band
structure. In the GW case, the procedure is equivalent; one has to pass to Wannier90 the GW quantities instead of the LDA ones, which
is done automatically by ABINIT setting prtwant to 3. In case we just calculated the GW corrections in a reduced set of k-points of the
irreducible Brillouin zone, ABINIT uses symmetry operations to obtain the corrections corresponding to the full irreducible Brillouin zone.

This feature is intended to be easy to use since we just have to employ one variable. In addition, we provide an internal test as an
example of how to do GW band structure interpolation with self explanatory notes (tests/wannier90/t03.in).

6.6. Excitation energies from Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory (TDDFT) is the extension of DFT to the time domain when the external potential is a
function of time, and so it is the density. TDDFT relies on the Runge–Gross (RG) Theorem (1984) [153]. One of its successful applications
is in the computation of the absorption spectrum of molecules within the linear response formalism (TDDFRT).

The dynamical polarizability α(ω), describing optical absorption spectra of isolated systems, can be obtained from the linear-response
function; the latter is calculated, within TDDFRT, by solving a Dyson-like equation [154]. This can be done in practice by solving an
eigenvalue equation in the configuration space, i.e. in the space of the products of two KS wavefunctions (one particle and one hole):(

A B
B∗ A∗

)(
XI

Y I

)
= ωI

(
1 0
0 −1

)(
XI

Y I

)
, (60)

where (the indexes i j and hk are particle–hole indexes in the KS basis, the Greek indexes refer to spin)

Aijσ ,hkτ (ω) = δσ ,τ δi,hδ j,k(εhτ − εkτ ) − √|giσ − g jσ | f Hxc
i jσ ,hkτ (ω)

√|ghτ − gkτ |,
Bijσ ,hkτ (ω) = −√|giσ − g jσ | f Hxc

i jσ ,khτ (ω)
√|gkτ − ghτ |.

This procedure is usually referred as “TDDFT a la Casida” [155]. Here ε are the KS eigenvalues, g the KS occupation numbers, and
fHxc = δ2 AHxc[ρ]/δρ2 is the exchange and correlation kernel of the TDDFRT (AHxc is the “Hartree + exchange and correlation” part of
action of the system). Finally (XI , Y I ) are the eigenvectors and ωI the eigenvalues solution of the problem; in particular the eigenvectors
are divided into the “particle–hole” and the “hole–particle” part XI and Y I respectively.

The matrix which has to be diagonalized in Eq. (60) is in general not Hermitian. However, for collinear and isolated systems (when the
k-points set reduces to the Γ point only) it is always possible to work with real KS wavefunctions and the problem can be rewritten in
the form of an Hermitian matrix

Ω(ωI )F I = ωI F I , (61)

where

Ω = (A − B)−1/2(A + B)(A − B)−1/2. (62)

The resulting eigenvalues correspond to the excitations energies of the system, and the spectral intensities can be constructed from the
corresponding eigenvectors. The ABINIT package solves Eq. (61) within the adiabatic-LDA (ALDA), i.e. by using the kernel: fxc(rt, r′t′) �
δ(t − t′)δ2 ELDA

Hxc (ρ)/δρ(r)δρ(r′).
Both closed shell and open shell systems can be treated. In the first case, the matrix Ω (and so the eigenvalue problem (61)) can be

blocked in two, one for the spin singlet channel and one for the spin triplet channel. For open shell systems, since the spin symmetry is
not automatically respected, both spin channels are described by a single matrix. In the case of open shell systems TDDFT-ALDA is known
to suffer from the spin contamination problem [156], which could only be solved by inclusion of double excitations. The latters, which are
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Fig. 7. Two-level parallelization: Speedup of the abinit code with respect to the number of the processors.

missing in any frequency-independent kernel, would be required for a qualitatively correct description of the spin configuration of some
of the excited states [157]. In most systems, anyway, this problem affects only dipole-forbidden transitions.

To run “TDDFT a la Casida” within ABINIT one has to start from a previously computed ground state DFT calculation done with
prtden=1 and prtwf=1, so that the density and the KS electronic structure are written out into a file. By setting iscf=-1, getden=1
and getwf=1 ABINIT reads the needed information from the output of the previous run, and solves Eq. (61). All parameters have to be
consistent with the ground state calculation, except the input variables ixc and nband which can be freely chosen. The former specifies
the chosen approximation for the exchange and correlation kernel. This choice should generally be the same as the one used for the
potential in the ground state calculation, but it can also be varied, being aware of the fact that in this case possible violations of the sum
rule can occur [158]). The other input variable, nband, specifies the number of states used to construct the matrix Ω , and must be varied
in order to achieve convergence of the resulting spectra. A convergence parameter for the non-self-consistent calculation of the required
KS states (tolwfr) must also be provided. See doc/tutorial/lesson_tddft.html for a tutorial on “TDDFT a la Casida” for closed
shell systems.

7. Developments concerning speed-up and convergence issues

7.1. The three levels of parallelization of ground-state calculations

For systems involving a large number of atoms (hundreds), each electronic and/or molecular dynamics step can be very time consuming
on single-processor computers. Therefore, parallelization of electronic structure code has become one of the main software development
tasks in the past decade [159–163]. Meanwhile, the number of processors of supercomputers keeps on increasing, with nowadays tens
of thousands processors available on massively parallel supercomputers (see URL: http://www.top500.org). This issue is strongly linked to
the algorithms used (i) to perform the three-dimensional (3D) fast Fourier transformations (FFTs) and (ii) to solve the KS equations. In
order to address (i), we choose the 3D FFT implemented by Goedecker et al. [164] in ABINIT due to its efficiency on massively parallel
supercomputers. For (ii), since the band-by-band conjugate gradient (cg) proposed by Teter et al. [165] does not fit in the requirements of
parallelism, we have implemented the multi-band eigensolver lobpcg proposed by Knyazev [166,167]. This latter is well suited to address
the issue of large-scale and complex systems. On the one hand, regarding its performances, this algorithm can be parallelized and scales
linearly over hundreds of processors. On the other hand, about its robustness, lobpcg can overtake cg, especially when we increase the
size of the block used during the iterative minimization (see Ref. [167]).

The scheme of parallelization, as implemented in ABINIT, is based on three levels. First, all the quantities expanded over the PW basis
set (wavefunctions, densities, potentials, etc.) are distributed over a two-dimensional virtual grid of processors. As showed previously
(see Ref. [167]), by distributing the workload over two levels of parallelization rather than one (the FFT or band level) we improve the
efficiency of the code. In Fig. 7, we show the scaling obtained by using the two levels together. In this case, norm-conserving and PAW
calculations scales linearly up to 200 and 100 processors, respectively. Finally, a third level of parallelization is added, the k-point one,
already introduced in ABINIT a long time ago [7]. The scaling is perfect along this dimension, as expected. By demonstrating the feasibility
of such a coupling, we are now able to cover all the possible situations met in the framework of ab initio simulations: large numbers of
k-points, {G} vectors and/or bands.

As concerns the compilation, the user have to fill various fields along the configure process. The compilation of the parallel version is
activated by setting enable-mpi=“yes”. If the MPI-IO and/or the scalapack libraries are available on the platform, set also enable-mpi-io
and/or enable-scalapack=“yes”, respectively. We also strongly advise the user to link the parallel version to the libraries (Lapack, Blas

and ScaLapack) distributed for the supercomputer; in order to benefit of all the platform-dependent optimizations. Concerning the input
variables in the input file of ABINIT, the user have to indicate:
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• paral_kgb=1: activate the triple “kgb” parallelization.
• npband=m, npfft=p and npkpt=k: numbers of band, FFT and kpt processors.
• wfoptalg=14,4: lobpcg with or without optimizations.
• fft_opt_lob=2: generalization of the transposition principle.
• fftalg=401: the 3dim parallel FFT of Goedecker et al. [164].
• bandpp=2: advised for istwfk=2 (or to improve the convergence).

For real applications using lobpcg with the triple “kgb parallelization”, the user can refer to recent studies (see Refs. [168,169]) and also
follow the examples included in the tests/paral/ test suite (tP.in, tQ.in, tR.in, tS.in, tW.in, tX.in and tY.in).

7.2. Parallelism of the GW calculations

Many-body calculations have CPU and memory requirements much larger than those needed for standard ground-state applications.
Therefore an optimized implementation able to take advantage of symmetries as well as of a parallel environment supporting the MPI
protocol is of fundamental importance.

Symmetry properties, including Shubnikov anti-ferromagnetic symmetries of type IV [170], are extensively employed in each phase of
the GW calculation in order to reduce the computing effort and the memory consumption. The number of independent matrix elements
needed to calculate the irreducible polarizability (optdriver=3) can be significantly reduced by taking advantage of time-reversal invari-
ance (awtr=1), as well as space group symmetries (symchi=1). An analogous computing saving can be achieved during the calculation of
the QP corrections (optdriver=4) by setting symsigma to 1. Input files exemplifying these features can be found in the tests t63.in,
t64.in, t68.in, and t69.in located in the directory tests/v5/.

For what concerns the MPI parallelization, two different parallel algorithms are available. The choice of the particular algorithm to use
is governed by the input variable gwpara. The value gwpara=1 refers to the standard parallelism over k-points commonly employed in
many ab initio codes. The k-point parallelism is characterized by a very small overload due to MPI communications, is very efficient in the
case of metallic compounds, but it is of no help in the case of systems sampled only at the Γ point. More importantly, gwpara=1 does
not lead to any reduction of the memory requirement since each node has to store in memory the entire set of bands (both empty and
occupied) used to evaluate the Green’s functions.

To tackle large systems, ABINIT provides a different parallel algorithm in which the calculation of χ̃ and Σ is parallelized over bands
(gwpara=2). This particular distribution – which strongly differs from the standard approach used in the other parts of ABINIT – allows
both CPU and memory saving since each processor has to calculate only the partial contribution to χ̃ or Σ arising from a subset of
energy states. The GW band parallelism presents good scalability both concerning CPU time and memory requirements, since an increasing
number of empty states can be compensated for by just using more processors. The only limiting factor is represented by the number
of bands used to evaluate the Greens’ function (nband) which is usually of the order of hundreds or even more. Exemplifying automatic
tests are provided in several input files: the k-point parallelism is tested in paral/tM.in, and paral/tO.in while the input files
paral/tN.in, paral/tU.in, and paral/tV.in show how to run a GW calculations parallelized over bands.

Despite the intensive coarse grained MPI parallelization of the GW part, QP calculations are still challenging, especially in the case of
systems with a large unit cell. The most important memory bottlenecks are represented by the storage of the wavefunctions in real space
and of the two-point function ε−1

G1,G2
(q,ω) required to construct W . It is worth stressing that, in the present implementation, the memory

consumption due to ε−1
G1,G2

(q,ω) does not scale with respect to the number of processing units. This might render GW calculations on
memory-distributed clusters with a relatively small amount of RAM per node unfeasible. The memory consumption can, however, be
significantly reduced (at the price of worsening performance) through the input variable gwmem which consists of two separated digits.
The first digit relates to the memory strategy to be used for ε−1, while the second digit defines how the storage of the wavefunctions
should be managed. The storage in memory of the full ε−1 can be partly avoided by opting for an out-of-core solution in which a single
q-point is stored in the central memory while the entire two-point function is stored on disk (gwmem=0x). Also the memory needed to
store the wavefunctions can be significantly decreased by using gwmem=x0. In this case, only the wavefunctions in G-space are stored
in memory, and an FFT from G to r is performed whenever a particular wavefunction is required. Example files showing how to use these
features of the implementation are provided in tests/v5/t65.in, and tests/v5/t70.in.

For systems requiring a dense sampling of the Brillouin-zone and, therefore, a large number of q-point in ε−1
G1,G2

(q,ω), ABINIT provides
the possibility of splitting the calculation of the full dielectric matrices into smaller jobs that can be run independently. The partial
matrices generated in the different calculations can then be gathered in a unique binary file by means of the mrgscr utility. The two
variables nqptdm and qptdm are used to define the number and the reduced coordinates of the subset of q-points, respectively. The
example input files t87.in, t88.in, and t89.in in the directory tests/v3/ show how to split a screening calculation then merging
the final results.

7.3. The extrapolar method for self-consistent cycles

Background
The most common and stable algorithm for solving DFT problems consists in a two step eigenvalue search. For a given Hamiltonian, one

seeks the firsts eigenvectors (bands), then the resulting bands are used to redefine a new Hamiltonian; this process being performed until
the bands (or the resulting Hartree potential, or the associated energy, or any available convergence criterion) stop changing. A critical
step in this algorithm is the construction of the new Hamiltonian. It can prevent reaching the system ground state. This problem being all
the more stringent as system size increases and band gap decreases.

In systems with homogeneous dielectric behaviour, the Kerker’s [171] preconditioner can solve efficiently this problem. For the less
trivial inhomogeneous case, an universal method [172], derived from Newton–Raphson algorithm, was derived, long ago, to change a
diverging system into a converging one. Yet it yields an unfavorable scaling with system size together with a large prefactor that makes it
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Fig. 8. Square norm of the potential residuals (vres2) as a function of the SCF step on an infinite slab of α-silver, cut along [110], wide of 18 atoms separated by about
32 bohrs. The triangles and the plain circles depict evolution of vres2 using respectively Kerker’s method or extrapolar for preconditioner.

virtually unusable on a planewave basis for systems with more than about ten atoms. The extrapolar [173] method is an approximate of
this method that allows a dramatic reduction of the prefactor while almost preserving its perfect preconditioner behaviour.

Description and variables
Applying a preconditioner to the DFT problem can be resumed in the following steps: evaluation of the susceptibility matrix χ0, from

which the dielectric matrix and its inverse is deduced; and then multiplying the potentials residuals with the inverse dielectric matrix.
The evaluation of χ0 is the computationally heavy part of this process since

χ0(r, r′) =
∑

k

nvalence∑
n=1

∞∑
n′=nvalence+1

2
ψ∗

kn(r)ψkn′(r)ψ∗
kn′(r′)ψkn(r′)

Ekn′ − Ekn
. (63)

Where r stands for spatial coordinates; k are sampling points of reciprocal space; ψkn are bands; n is the number attributed to bands
ordered by eigenvalues starting from the lowest; and Ekn is the eigenvalue associated to a band.

The extrapolar method consist in approximating this calculation with the following formula:

χ̃0(r, r′) =
∑

k

nvalence∑
n=1

nband∑
n′=nvalence+1

2
ψ∗

kn(r)ψkn′(r)ψ∗
kn′(r′)ψkn(r′)

Ekn′ − Ekn

+ 2
∑

k

nvalence∑
n=1

Λ

Ē − Ekn
×

[
ρn(r)δ(r − r′) − ψ∗

kn(r)ψkn(r′)
nband∑
n′=1

ψkn′(r)ψ∗
kn′(r′)

]
. (64)

Where nvalence is the number of occupied bands; nband is the total number of calculated bands; ρn is the density associated to a band;
and Λ and Ē are the parameters used to tune the approximation. Within ABINIT those parameters are associated with the input variables
dielam and diegap.

Besides, since usually only the largest wavelengths are associated with divergence of the SCF-cycle, the computation of the precondi-
tioner is limited to a small part of the planewave basis set. The cutoff energy used to defined this sub-basis is called diecut.

The default values for dielam, diegap and diecut are respectively: 0.5, 0.1 Hartree and 2.2 Hartree. Our tests on various materials and
configuration shows that those values are quite safe to use in any situation. However for the largest systems it can be useful and almost
not detrimental to reduce the value of diecut.

Since the dielectric behaviour of a system from the very first random Hamiltonian to the converged one hardly changes, it is not
necessary to evaluate the preconditioner at each cycle. The variable used to choose the preconditioner in ABINIT is iprcel. Choosing a
value from 41 to 49 will make abinit evaluate the extrapolar preconditioner at the first step and then at (iprcel−40)th step. Choosing a
value between 141 and 149 will make abinit compute the preconditioner every (iprcel−140) step, starting at the first one. This last option
is better reserved for the most difficult convergence problem. For most system iprcel 45+ is very convenient.

Fig. 8 shows the effect of the extrapolar method on a typical ill-conditioned DFT problem. Both calculations use default values for the
mixing algorithm and preconditioning. For extrapolar the inverse dielectric matrix is evaluated at step one and five while Kerker’s method
is by default set up for highly conductive metals.

Automatic tests
The extrapolar method is used within many of the ABINIT self-tests. Namely in tests/v1/Input/tXX.in where XX stands

for 51, 53 to 55, 57, 71 to 73; tests/v2/Input/t05.in and tests/v2/Input/t08.in; tests/v4/Input/t46.in; in
tests/tutorial/Input, t47.in and t48.in; and in /tests/paral/Input, tD.in and tW.in. Among them some are specif-
ically dedicated to test extrapolar. Those uses surfaces of molybdenum and perform a simple preconditioned ground state calculation.
Otherwise extrapolar is used for improving convergence rate of ground state calculation required by tests that relies on converged ground
state properties.
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7.4. The extrapolar method for GW calculations

As explained in Section 6.1, the GW calculations are computationally demanding. This originates in particular from the many empty
states required to achieve the convergence. Typically several hundred empty states are necessary, depending on the system. The extrapolar
method exposed in the previous paragraph looks appealing in order to eliminate most of the empty states.

In the framework of the GW calculations, the extrapolar method can be used to decrease the number of empty states both in the
independent-particle response function and in the GW self-energy, as proposed by Bruneval and Gonze [174]. The implementation of
the extrapolar method within GW introduces only one single parameter: the average high-energy Ē . The corresponding weight Λ has
been simply set to one. The input parameter gwcomp governs the use of the extrapolar method when performing a screening calculation
(optdriver=3) or a self-energy calculation (optdriver=4). The energy Ē is set by the input variable gwencomp. Its value is referenced
with respect to the highest band energy included in the calculation. In all the cases studied so far, a carefully chosen value of Ē has always
permitted for a dramatic reduction of the number of empty states.

The problem of choosing the right value for the parameter Ē can be addressed by finding a constraint. Indeed, we know from Ref. [137]
that the independent-particle response function satisfies a sum-rule:

+∞∫
0

dωω
4π

|q + G|2 �χ0GG(q,ω) = −π

2
ω2

p . (65)

When truncating the number of empty states, the resulting response function χ0 violates this sum-rule. When adding the extrapolar
correction, one can try to recover the fulfillment of the sum-rule, even with a limited number of empty states. This constitutes a guideline
to determine an “optimal” value for Ē . The value of the integral in the left-hand side of Eq. (65) is calculated by ABINIT during a screening
run (optdriver=3), so it can be monitored by the user.

The extrapolar method in the GW context is exemplified in the automatic tests tests/v5/t65.in, tests/v5/t69.in, and
tests/paral/tV.in.

8. Summary

The present paper had the aim to describe ABINIT 5.7.4, in view of its use by newcomers as well as more experienced users. The
different capabilities of ABINIT have been reviewed, with, for each capability, an adequate entry point to more information, to be found
either in the package itself (existing tutorials, for capabilities developed before 2005) or in the present paper (for capabilities developed
after 2005). In all cases, example input files are present in the package, together with reference output files (more than 600 test cases are
present). The present paper also give some information on the structure of the main ABINIT program, the structure of the whole package,
and describes how to build and to run ABINIT.
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