Simulation of All-Order Density-Functional Perturbation Theory, Using the Second Order and the Strong-Correlation Limit

Michael Seidl,* John P. Perdew, and Stefan Kurth†

Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
(Received 2 August 1999)

To boost the accuracy of electronic structure calculations, the exchange-correlation energy may be constructed from the Kohn-Sham orbitals. A formally exact construction is the density-functional perturbation series, which appears to diverge for many real systems. We predict the radius of convergence and resum this series, using only exact exchange and second-order correlation plus explicit density functionals for the strong-interaction limit. Our new correlation functional, along with exact exchange, predicts atomization energies with competitive accuracy and without the usual error cancellation.

PACS numbers: 31.15.Ew, 31.25.–v, 71.15.Mb

Electronic structure calculations, especially those for large molecules or unit cells, are usually based upon Kohn-Sham (KS) density-functional theory [1]. In this theory, the ground-state density \(\rho(\mathbf{r}) \) and total energy \(E[\rho] \) are constructed by solving self-consistent one-electron equations, and only the density dependence of the exchange-correlation energy \(E_{xc}[\rho] \) must be approximated. The simple local density approximation is surprisingly good for periodic solids, and generalized gradient approximations (GGA’s) [2] have made the theory useful for molecules. However, these limited-form explicit density functionals have reached a limit of accuracy where any improvement for some systems or properties must be bought by a worsening elsewhere. Greater accuracy is needed before the theory will be useful for, for instance, the prediction of reaction rates.

Progress has been achieved by implicit density functionals [3] that construct the exchange-correlation energy from the KS orbitals. For example, predicted atomization energies of molecules have been improved by meta-GGA’s which make use of the orbital kinetic energy density [4], and by hybrids [5–7] which mix a fraction (\(\sim 25\% \)) of exact exchange with GGA exchange and correlation. Formally (but not practically), the problem is solved by the density-functional perturbation theory for \(E_{xc}[\rho] \) by Görling and Levy [8], for which only the first-order (exact exchange) and second-order (GL2 correlation) terms have been evaluated explicitly from the occupied and unoccupied KS orbitals.

In this Letter, we propose a way to resum the density-functional perturbation expansion. Only the first- and second-order (weak interaction) terms are treated exactly; explicit density functionals are used for the opposite (strong-interaction) limit. Our interaction strength interpolation (ISI) for the adiabatic connection provides a density functional [Eq. (11) below] that is both (i) competitively accurate for atomization energies (Table I) and (ii) exact in the high-density or exchange-dominated limit. Possible benefits of exact exchange [9] include improvements in derivative discontinuities and a more accurate KS potentia [10], essential for a correct description of linear and nonlinear polarizabilities of large systems [11,12] as well as time-dependent and excited-state phenomena [13]. ISI generalizes GL2 in the same sense that GGA generalizes the second-order gradient expansion. It suggests that, for many real systems, the density-functional perturbation expansion is being applied outside its radius of convergence, so that resummation is a necessity.

The exchange-correlation energy \(E_{xc}[\rho] \) of an interacting electron system with ground-state density \(\rho(\mathbf{r}) \) is defined by \(E[\rho] = T[\rho] + U[\rho] + \int d^3r \rho(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) + E_{xc}[\rho] \). The kinetic energy \(T[\rho] \) of the noninteracting system with the same density \(\rho \), the Hartree energy

TABLE I. Atomization energies \(\Delta E \) of 18 molecules (in units of 1 kcal/mole = 0.0434 eV), in Görling-Levy second-order perturbation theory (GL2) [6], in our ISI resummation, and from experiment (as in Ref. [4]). \(\alpha_c \) is the estimated radius of convergence for the GL perturbation expansion of \(\Delta W_a \). Also shown are the PC values for \(\Delta W_a \) and \(\Delta W_a^{PC} \) (in units of 1 hartree = 27.21 eV).

<table>
<thead>
<tr>
<th>Mol.</th>
<th>(\Delta E_{	ext{GL2}})</th>
<th>(\Delta E_{	ext{ISI}})</th>
<th>(\alpha_c)</th>
<th>(\Delta W_a^{PC})</th>
<th>(\Delta W_a^{PC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)</td>
<td>114</td>
<td>107.3</td>
<td>109.5</td>
<td>1.97</td>
<td>0.313</td>
</tr>
<tr>
<td>Li(_2)</td>
<td>70</td>
<td>58.8</td>
<td>57.8</td>
<td>0.91</td>
<td>0.258</td>
</tr>
<tr>
<td>Li(_2)</td>
<td>39</td>
<td>22.5</td>
<td>24.4</td>
<td>0.39</td>
<td>0.111</td>
</tr>
<tr>
<td>Li(_2)</td>
<td>193</td>
<td>142.7</td>
<td>138.9</td>
<td>0.21</td>
<td>0.616</td>
</tr>
<tr>
<td>Be(_2)</td>
<td>22</td>
<td>5.7</td>
<td>3.0</td>
<td>0.27</td>
<td>0.122</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>454</td>
<td>423.4</td>
<td>419.3</td>
<td>1.25</td>
<td>1.536</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>340</td>
<td>300.9</td>
<td>297.4</td>
<td>0.93</td>
<td>1.293</td>
</tr>
<tr>
<td>OH</td>
<td>128</td>
<td>108.6</td>
<td>106.4</td>
<td>0.69</td>
<td>0.473</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>274</td>
<td>235.7</td>
<td>232.2</td>
<td>0.63</td>
<td>0.973</td>
</tr>
<tr>
<td>HF</td>
<td>173</td>
<td>143.7</td>
<td>140.8</td>
<td>0.42</td>
<td>0.551</td>
</tr>
<tr>
<td>B(_2)</td>
<td>190</td>
<td>68.1</td>
<td>71.0</td>
<td>0.06</td>
<td>0.375</td>
</tr>
<tr>
<td>CN</td>
<td>335</td>
<td>188.1</td>
<td>178.5</td>
<td>0.14</td>
<td>0.806</td>
</tr>
<tr>
<td>CO</td>
<td>355</td>
<td>265.9</td>
<td>259.3</td>
<td>0.22</td>
<td>0.891</td>
</tr>
<tr>
<td>N(_2)</td>
<td>342</td>
<td>234.6</td>
<td>228.5</td>
<td>0.27</td>
<td>0.942</td>
</tr>
<tr>
<td>NO</td>
<td>265</td>
<td>157.9</td>
<td>152.9</td>
<td>0.23</td>
<td>0.801</td>
</tr>
<tr>
<td>O(_2)</td>
<td>230</td>
<td>123.6</td>
<td>120.5</td>
<td>0.18</td>
<td>0.689</td>
</tr>
<tr>
<td>O(_3)</td>
<td>407</td>
<td>136.8</td>
<td>148.2</td>
<td>0.15</td>
<td>1.157</td>
</tr>
<tr>
<td>F(_2)</td>
<td>134</td>
<td>34.0</td>
<td>38.5</td>
<td>0.16</td>
<td>0.384</td>
</tr>
</tbody>
</table>

m.a.e. | 74 | 4.3 | ⋮
The perturbation series (2) is closely related to the Taylor expansion of $W_\alpha[\rho]$ around $\alpha = 0$,

$$W_\alpha[\rho] = E_\alpha[\rho] + \sum_{n=2}^\infty E^{\text{GL}n}_c[\rho]n\alpha^{n-1}. \quad (5)$$

As α increases from 0, the function W_α starts from $W_0 = E_\alpha$, first decreasing linearly but asymptotically approaching a constant value $W_\infty \leq E_\alpha$ as $\alpha \to \infty$ [19,20]:

$$W_\alpha[\rho] \to W_{\infty}[\rho] + W^{\alpha}_c[\rho]\alpha^{-1/2} \quad (\alpha \to \infty). \quad (6)$$

As we shall see, this behavior can give the expansion (5) a finite radius of convergence $\alpha_c < 1$, which via Eq. (3) makes the series (2) diverge.

In the strong-interaction limit $\alpha \to \infty$, the electronic positions become strictly correlated within the continuous density $\rho(r)$. Any accidental clustering of these positions is strictly suppressed. In the simple “point charge plus continuum” (PC) model [19,21] for this limit, a spherical unit cell of empty space surrounds each electron; the electron can be off center in the presence of a density gradient. This model provides accurate approximations [21] to $W_\alpha[\rho] \leq E_\alpha[\rho]$ and $W^{\alpha}_c[\rho] \geq 0$ in Eq. (6):

$$W_\infty^{\text{PC}}[\rho] = \int d^3r \left[A\rho(r)^{4/3} + B \frac{\nabla\rho(r)^2}{\rho(r)^{4/3}} \right],$$

and

$$W_\infty^{\text{PC}^2}[\rho] = \int d^3r \left[C\rho(r)^{2/3} + D \frac{\nabla\rho(r)^2}{\rho(r)^{2/3}} \right], \quad (8)$$

with the constants $A = -1.451, B = 5.317 \times 10^{-3}, C = 1.535$, and $D = -2.558 \times 10^{-2}$. The accuracy of these second-order gradient forms seems to follow from the short range [21] of the PC cell. Because of a severe self-correlation error absent in meta-GGA [4], the local density approximation ($B = D = 0$) and standard GGA’s fails in this limit [21].

We truncate the divergent expansion (5) at linear order (GL2) and make the simplest-possible resummation:

$$W_\alpha^{\text{ISI}}[\rho] = W_\infty[\rho] + \frac{X[\rho]}{\sqrt{1 + Y[\rho]/\alpha} + Z[\rho]} \quad (9)$$

(“interaction-strength interpolation”), where the coefficients are chosen so that both $E_\alpha[\rho]$ and the $n = 2$ term of the expansion (5) as well as the asymptotic behavior (6) are reproduced correctly.

$$X = \frac{x^2}{z^2}, \quad Y = \frac{x^2y^2}{z^6}, \quad Z = \frac{x^2y^2}{z^6} - 1, \quad (10)$$

with $x = -4E^{\text{GL}2}_c[\rho], y = W^{\prime}_c[\rho]$, and $z = E_\alpha[\rho] - W_\infty[\rho]$. $W_\alpha^{\text{ISI}}[\rho]$ has all the fundamental properties of the unknown exact integrand $W_\alpha[\rho]$, as listed in Ref. [19]. We use the PC model for $W_\infty[\rho]$ and $W^{\alpha}_c[\rho]$.

By analytic integration [Eq. (3)] of the function (9), we obtain the ISI exchange-correlation functional,

$$E^{\text{ISI}}_{xc}[\rho] = W_\infty + \frac{2X}{Y} \left[(1 + Y)^{1/2} - 1 - Z \ln \left(\frac{(1 + Y)^{1/2} + Z}{1 + Z} \right) \right]. \quad (11)$$
Unlike the other accurate functionals $E_{xc}^{pp}[\rho]$ available, the ISI functional has the exact exchange part, $E_{xc}^{ISI}[\rho] = E_{xc}^{ex}(\rho)$. This follows from Eq. (1) via scaling relations given in Refs. [19] and [21]. Therefore, ISI does not depend upon a cancellation of errors between E_c and E_r.

Since evaluation of the GL2 energy is computationally rather expensive (as it is for the corresponding term in the more popular MP series), accurate values for $E_c^{GL2}[\rho]$ are usually unavailable in the literature. An exception arises [6] for molecular atomization energies,

$$\Delta E[\rho_{mol}, \{\rho_{st}^k\}] = \sum_{k=1}^{K} \Delta E[\rho_{st}^k] - E[\rho_{mol}], \quad (12)$$

which are energy differences. In Eq. (12), ρ_{mol} and the $\rho_{st}^k (k = 1, \ldots, K)$ are, respectively, the ground state densities of the molecule and its K separated atoms after atomization.

Utilizing frozen-core ideas along with GGA densities, orbitals, and exchange potentials, Ernzerhof [6] provided the differences $\Delta E_{xc}^{GL2}[\rho_{mol}, \{\rho_{st}^k\}]$ but not the values $E_{xc}^{GL2}[\rho]$ for the individual densities ρ_{st}^k and ρ_{mol}. Consequently, we cannot make the interpolation (9) for the individual integrands $W_{\alpha}[\rho]$. However, the weak- and strong-interaction limits are preserved when the same analytic form (9) is used to model the difference function $\Delta W_{\alpha}[\rho_{mol}, \{\rho_{st}^k\}] = \sum_{k=1}^{K} W_{\alpha}[\rho_{st}^k] - W_{\alpha}[\rho_{mol}]$ which, after integration via Eq. (3), yields the contribution $\Delta E_{xc}[\rho_{mol}, \{\rho_{st}^k\}]$ to the quantity (12). Thus we have used in $x, y,$ and z of Eq. (10) the differences ΔE_{xc} and ΔE_{xc}^{GL2} from the third and last columns of Table 2 in Ref. [6] and our ΔW_{xc} and ΔW_{xc}^{GL2}, evaluated with GGA [2] densities at the same experimental geometries used in Ref. [6].

Table I shows our results for 18 molecules. The GL2 results from Ref. [6] (using $\Delta E_{xc}^{GL2} = \Delta E_{xc}^{exact} + \Delta E_{xc}^{GL2}$) display severe overbinding, especially for the multiply bonded molecules (the last eight in Table I, including the strong-static-correlation cases F$_2$ and O$_3$). Our ISI interpolation to the PC values of ΔW_{xc} and ΔW_{xc}^{GL2}, which represents a simple resummation of GL perturbation theory, greatly improves the accuracy of the predicted atomization energies, reducing the mean absolute error from 74.4 to 4.3 kcal/mol. This is achieved without error cancellation, since E_{xc}^{ISI} is exact exchange. The meta-GGA of Ref. [4], which does rely upon error cancellation, makes a mean absolute error of 4.1 kcal/mol for these molecules.

The explicit expression for $E_{xc}^{GL2}[\rho]$ is [8]

$$E_{xc}^{GL2}[\rho] = -\sum_{n=1}^{\infty} \frac{|\langle \psi_0 | \hat{V}_{ee} - \hat{V}_H - \hat{V}_x | \psi_0 \rangle|^2}{E_0 - E_n}. \quad (13)$$

Here, ψ_0 is the nth excited state of the KS single-particle Hamiltonian H_{KS} (with ground state ψ_0), i.e., $H_{KS} \psi_0 = E_0 \psi_0$, \hat{V}_H and \hat{V}_x, respectively, are the one-particle operators of the Hartree potential $v_H(r) = \int d^3r' \rho(r')/|r - r'|$ and the exchange potential $v_x(r) = \delta E[\rho] / \delta \rho(r)$.

Because the KS orbitals in E_r and E_{xc}^{GL2} are implicit functionals of the density $\rho(r)$, so is E_{xc}^{ISI} of Eq. (11). For an ion of fixed electron number N in the limit of large nuclear charge, this functional correctly reduces to $E_r + E_{xc}^{GL2}$ and so meets the challenge to density-functional theory presented almost 20 years ago [22]: Its correlation energy correctly saturates to a negative constant for some values of N (e.g., 10) and decreases linearly with nuclear charge for other values of N (e.g., 4). Even van der Waals forces can be described [23] if the functional $E_{xc}^{GL2}[\rho]$ is employed.

Although GL and MP perturbation theories are computationally expensive, it is not proven whether either series is convergent. There are indications that the MP series diverges even for systems such as the neon atom [24] which, because of their large HOMO-LUMO gaps, should be good candidates for convergence.

For our model integrand (9), the Taylor expansion (5) has a finite radius of convergence, given by

$$\alpha_c[\rho] = \frac{1}{1 - \frac{\langle E_x - W_{xc}^{GL2} \rangle^2}{16 \langle E_{xc}^{GL2} \rangle^2}} \quad (14)$$

since the continuation of the function $W_{\alpha}^{ISI}[\rho]$ into the complex plane is not analytic at $\alpha = -\alpha_c[\rho]$. Figure 1(a) shows the function W_{α}^{ISI} for an example where $\alpha_c = 0.812 < 1$. Also shown are the truncated expansions

![FIG. 1. (a) The model integrand W_{α}^{ISI} [Eq. (9)] in arbitrary units for a system with $E_r - W_{xc} = 1.0$, $E_{xc}^{GL2} = -0.0925$, and $W_{xc}^{GL2} = 3.0$ (dashed curve), and its truncated Taylor expansions of orders $n = 1\ldots20$ (solid curves). The radius of convergence is $\alpha_c = 0.812$. (b) The corresponding integrated correlation energies $\sum_{n=2}^{\infty} E_{xc, ISI}[\rho] = \int d\alpha W_{\alpha}^{ISI}[\rho]$ in nth order Görling-Levy perturbation theory (full circles) oscillate around $E_{xc, ISI}[\rho]$ (horizontal dashed line) and eventually diverge. (An accurate truncation of the series would include only half of the smallest term, $m = 13$, and all of the lower-order terms.)
\[W^{\text{1S1}}_{\alpha}(n) = \sum_{m=1}^{\infty} \frac{1}{m!} \alpha^m \left[d^n W^{\text{1S1}}_{\alpha} / d\alpha^m \right]_{\alpha=0} \] of this function for \(n = 1-20 \). Clearly, the series converges rapidly for \(\alpha < \alpha_c \) but produces increasingly unnatural behavior for \(\alpha > \alpha_c \). By integration, we can predict what we expect would be the outcome of GL perturbation theory, if carried to \(n \)th order. These correlation energies are plotted in Fig. 1(b) for \(n = 2-30 \). The oscillating pattern there results from the sign alternation of the coefficients in the divergent Taylor expansion of \(W^{\text{1S1}}_{\alpha} \), as can be seen in Fig. 1(a). These oscillations appear to be typical for a divergent perturbation expansion, carried to high orders \(n \); see Figs. 1 and 2 in Ref. [24].

In Table I, \(\alpha_c = \frac{1}{\sqrt{6}} (\Delta E_0 - \Delta W_0)^4 / (\Delta E^{\text{GL2}}_c \Delta W_0^c)^2 \) is <1 for many molecules, suggesting that the GL perturbation series for \(E_c[\rho] \) does not converge in these cases. Since \(\Delta W_0 \) is the sum of the \(K \) functions \(W_0[\rho_0^{\alpha}] \) and \(-W_0[\rho_{\text{mol}}] \), its radius of convergence \(\alpha_c \) is the minimum of those for the individual functions of \(\alpha \), most likely that for \(W_0[\rho_{\text{mol}}] \). For some atoms (e.g., He, Be, and Ne), we find \(1 < \alpha_c < 2 \) [21].

While the specific radius of convergence (14) follows from our model (9), the physical reason for a finite radius of convergence could be an instability of \(\Psi_{\alpha}[\rho] \) under mutual Coulomb attraction (\(\alpha < 0 \)). According to Eq. (14), the radius of convergence \(\alpha_c \) for the perturbation expansion is nonzero for any system in which \(E^{\text{GL2}}_c \) is finite. For the uniform electron gas on a per-electron basis, however, \(E^{\text{GL2}}_c = -\infty \) and \(\alpha_c = 0 \); our Eqs. (9) and (11) remain finite, but are not accurate in this limit [21]. Generally, the random phase approximation provides a standard resummation for weak interactions which can be interpolated to the strong interaction limit or otherwise [25] corrected.

Although we have not done so, it is possible [3,9] to construct the exchange-correlation potential \(\delta E_{xc}[\rho] / \delta \rho(r) \) for an implicit density functional.

Our analysis suggests that a perturbation expansion, even if divergent, contains strong information in its low-order terms. Additional independent information on the strong-interaction limit, which is simple [19–21] but not accessible by perturbation theory, can be used for an accurate resummation of the perturbation series.

This work was supported by the National Science Foundation under Grant No. DMR 98-10620, by the Deutsche Forschungsgemeinschaft under Grant No. SE-763/2-1, and by the Petroleum Research Fund under ACS-PRF Grant No. 33001-AC6. We thank Filipp Furche for helpful discussions.

*Present address: Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany.