Density functional theory and tensor product states

Michael Lubasch¹, Johanna I. Fuks², Heiko Appel¹, Mari-Carmen Bañuls¹, Angel Rubio¹², J. Ignacio Cirac¹
¹ 1 Max Planck Institute of Quantum Optics, 85744 Garching, Germany
² 2 Hunter College and the City University of New York, New York 10065, USA
³ 3 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
⁴ 4 Nano-Bio Spectroscopy group and ETSF, Universidad del Pais Vasco, 20018 San Sebastián, Spain

Motivation

- tensor product states (TPS) find their main application in the interplay between quantum information and condensed matter theory
- they are built by restricting the coefficients of the wave function to the contraction of a tensor network.

\[|\Psi_{TPS}\rangle = \sum_{\alpha_1,\ldots,\alpha_N} F(A_{\alpha_1}^1 \cdots A_{\alpha_N}^N |s_1 \cdots s_N) \]

\(U \) performs the contraction over the tensors \(A_i^\alpha \)

- an example in 2d [1,2]

- their properties make TPS a promising variational family of states for strongly correlated quantum many-body systems

Matrix product states

- matrix product states (MPS) constitute a particular class of 1d TPS
- they represent the variational wave functions that underlie the density matrix renormalization group [3]
- as such they have proven extremely successful in the approximation of ground states, and can also be used for time evolution
- the MPS coefficients comprise a product of matrices \(A_i^\alpha \) for \(1 \leq i \leq N \) which is surrounded by two vectors \(A_1^\alpha \) and \(A_N^\alpha \)

\[|\Psi_{MPS}\rangle = \sum_{\alpha_1,\ldots,\alpha_N} A_{\alpha_1}^1 A_{\alpha_2}^2 \cdots A_{\alpha_N}^N |s_1 \cdots s_N \rangle \]

- the MPS tensor network graphically represented:

DFT + MPS

- in order to obtain a lattice problem suited for TPS as in [4], we discretize space such that the external potential \(V = (v_1, v_2, \ldots, v_N) \) and the density \(\tilde{\rho} = (n_1, n_2, \ldots, n_N) \) are evaluated on a grid
- we can construct the non-interacting and interacting Hohenberg-Kohn functionals \(F_{\text{H-K}}^{\text{iso}} \) and \(F_{\text{H-K}}^{\text{iso}} \) from MPS ground state energies:

\[F_{\text{H-K}}^{\text{iso}} \left(\rho \right) = E^{\text{H-K}}(\rho) - \rho \cdot \int \text{d}^3r \text{d}^3s \rho \cdot \rho \]

\[F_{\text{H-K}}^{\text{iso}} \left(\rho \right) = E^{\text{H-K}}(\rho) - \rho \cdot \int \text{d}^3r \text{d}^3s \rho \cdot \rho \]

(\(\rho \) denotes the external potential to the density \(\rho \))
- the full Hohenberg-Kohn functional on a grid of \(N \) points can be seen as a tensor of rank \(N \):

Conclusions & Outlook

- the approximation error features a clear exponential decrease with the number of Schmidt coefficients, and thus MPS well approximate the full Hohenberg-Kohn functional of the small Hubbard chains considered here
- when the non-interacting Hohenberg-Kohn functional is subtracted before the approximation, the error improves roughly by one order of magnitude
- in all cases we observe that systems with weak interactions can be better approximated
- we therefore expect that this scheme works worse in case of the long-range interactions of the Coulomb problem: work in progress

Hohenberg-Kohn functional as MPS

- the exact Hohenberg-Kohn tensor is approximated as a MPS via successive truncated singular value decompositions:

\[\rho_{\text{MPS}}(\mathbf{r},\mathbf{s}) = \sum_{\alpha} \langle \psi_{\alpha} | \mathbf{r} \rangle \psi_{\alpha}^{\dagger} | \mathbf{s} \rangle \]

- the error of the MPS approximation can be read off from the decay of the Schmidt coefficients \(\lambda_{\alpha} \)
- we consider a Hubbard chain:

\[H = -J \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_i n_i \]

and compute the Hohenberg-Kohn tensor on a density grid via interacting inversion as in [5,6]; for each desired \(\rho_{\text{MPS}} \) we iteratively adjust \(\mathbf{r} \) according to the obtained \(\rho_{\text{MPS}} \) such that after interaction \(i \) the next \(\mathbf{r} \) reads \(\mathbf{r}_{i+1} = \mathbf{r}_i + \alpha (\mathbf{r}_i - \mathbf{r}_{i-1}) \) with \(\alpha = 0.1 \)

- we investigate 6 fermions on 6 lattice sites and impose a density spacing of 0.3 on each site that ranges from 0.4 to 1.6:

\[G_{\text{HF}}(\delta) : \text{MPS approximation with D Schmidt coefficients of } F_{\text{H-K}}^{\text{HF}}(\delta) \]

\[H_{\text{HF}}(\delta) : \text{MPS approximation with D Schmidt coefficients of } F_{\text{H-K}}^{\text{HF}}(\delta) \]

\[\omega = \left(\sum_{\alpha} | \lambda_{\alpha} |^2 \right) - \left(\sum_{\alpha} | \lambda_{\alpha} |^2 \right) \]

References