The derivative discontinuity in transport

Stefan Kurth

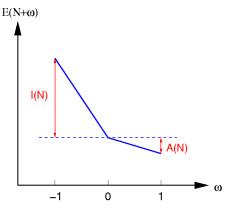
- 1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain
- 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- 3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu

Outline

- Setting the stage
- Derivative discontinuity and time-dependent picture of Coulomb blockade
- The Kondo effect: what TDDFT has to say
- Summary

Derivative discontinuity in static DFT

total energy as function of (fractional) particle number is a series of straight lines (Perdew et al, PRL 49, 1691 (1982))



derivative discontinuity

$$\Delta = I(N) - A(N)$$

I(N): ionization potential

A(N): electron affinity

N: integer number of electrons

Summary

Derivative discontinuity in static DFT (cont.)

for given external potential $v(\mathbf{r})$, extend HK ground state energy functional to non-integer particle numbers:

derivative discontinuity

$$\Delta = \lim_{\omega \to 0} \left(\frac{\delta E_v[n]}{\delta n(\mathbf{r})} \Big|_{N+\omega} - \frac{\delta E_v[n]}{\delta n(\mathbf{r})} \Big|_{N-\omega} \right) = \Delta_{KS} + \Delta_{xc}$$

KS discontinuity $\Delta_{KS} = \varepsilon_{LUMO} - \varepsilon_{HOMO}$

xc contribution to discontinuity:

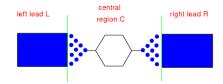
$$\Delta_{xc} = \lim_{\omega \to 0} \left(\frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \bigg|_{N+\omega} - \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})} \bigg|_{N-\omega} \right)$$

<u>note:</u> for traditional functionals (LDA, GGA): $\Delta_{xc} = 0$!!

Summary

(Static) DFT for the Hubbard model A simple impurity model for transport Landauer steady-state approach

TDDFT for transport



TD Kohn-Sham equation for orbitals

$$[i\partial_t - \hat{H}(t)]\psi_k(t) = 0$$

Hamiltonian of extended system L-C-R, no direct hopping between left and right leads

$$\hat{H}(t) = \left(\begin{array}{ccc} H_{LL}(t) & H_{LC} & 0 \\ H_{CL} & H_{CC}(t) & H_{CR} \\ 0 & H_{RC} & H_{RR}(t) \end{array} \right)$$

TDDFT for transport

downfolding of equation of motion for extended orbitals (in region L-C-R) onto equation for orbital projected onto central region only

Equation of motion for orbital projected on central region

$$[i\partial_t - \hat{H}_{CC}(t)]\psi_{k,C}(t) =$$

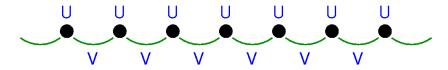
$$\int_0^t d\bar{t} \ \Sigma_{emb}^R(t,\bar{t})\psi_{k,C}(\bar{t}) + \sum_{\alpha} H_{C\alpha} g_{\alpha}^R(t,0)\psi_{k,\alpha}(0)$$

where (retarded) embedding self energy Σ^R_{emb} and (retarded) Green function g^R_{α} for isolated lead α describe coupling to leads

details in:

S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, PRB 72, 035308 (2005)

(Static) DFT for the Hubbard model



N.A. Lima et al (PRL **90**, 146402 (2003); EPL **60**, 601 (2002)): parametrize total energy per site based on exact, Bethe ansatz (BA), solution of uniform Hubbard model with density n:

$$e^{BA}(n,U) = -\frac{2|V|\beta}{\pi}\sin\left(\frac{\pi n}{\beta}\right)$$

with parameter $\beta(U)$ depending on interaction strength U one can extract xc energy $e^{BA}_{xc}(n,U)$ from this parametrization

Summary

derivative discontinuity at n=1

$$\Delta_{xc} = \lim_{\epsilon \to 0^+} \left[v_{xc}^{BALDA}(n = 1 + \epsilon) - v_{xc}^{BALDA}(n = 1 - \epsilon) \right]$$

$$= U - 4|V|\cos\left(\frac{\pi}{\beta(U)}\right)$$

local approximation:

for non-uniform Hubbard models, i.e., non-constant on-site energies or even different interactions at each site:

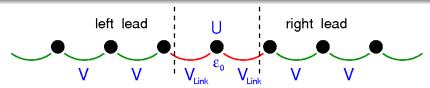
use $e^{BA}_{xc}(n_i,U_i)$ as xc energy at site i (Bethe ansatz LDA, BALDA)

adiabatic approximation:

time-dependence of TDDFT xc potential at site i through

$$v_{xc}(i,t) = v_{xc}^{BALDA}(n_i(t))$$

Simple impurity model for transport



one interacting impurity, Hubbard-like on-site interaction U, non-interacting leads, hopping V in leads and hopping $V_{\rm Link}$ from leads to impurity, on-site energy ε_0 at impurity

interested in case of weak links $|V_{\rm Link}| < |V| \longrightarrow {\sf use} \ U/V_{\rm link}$ as parameter in BALDA $\longrightarrow {\sf modified}$ discontinuity at impurity

$$\Delta = U - 4|V_{\text{Link}}|\cos\left(\frac{\pi}{\beta}\right)$$

Self-consistency condition for steady state density

Landauer approach:

assume for biased system there exists steady state with density n at impurity \longrightarrow self-consistency condition for n

$$n = 2 \sum_{\alpha = L,R} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{\beta}(\omega - W_{\alpha}) \Gamma(\omega - W_{\alpha}) |G(\omega)|^{2}$$
$$G(\omega) = [\omega - v_{KS}(n) - \Sigma_{L}(\omega - W_{L}) - \Sigma_{R}(\omega - W_{R})]^{-1}$$
$$v_{KS}(n) = \varepsilon_{0} + \frac{1}{2} U n + v_{xc}^{BALDA}(n)$$

 W_{α} : bias in lead α

 $f_{\beta}(\omega)$: Fermi function at inverse temperature β

 $\Sigma_{\alpha}(\omega)$: embedding self energy for lead α

Steady state self-consistent density for impurity model

l.h.s. and r.h.s. of self-consistency condition for n

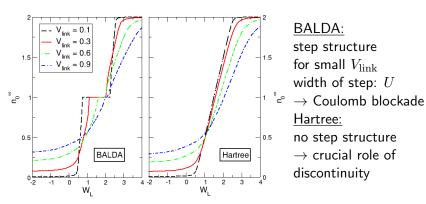


no solution for steady state density for some values of the bias.

to understand physics of this regime \longrightarrow smoothen xc discontinuity

Steady-state density vs. bias

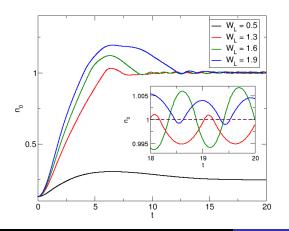
steady-state density as function of bias for different $V_{
m link}$



<u>note:</u> the role of the discontinuity in steady-state transport has also been discussed in C. Toher et al, PRL 95, 146402 (2005)

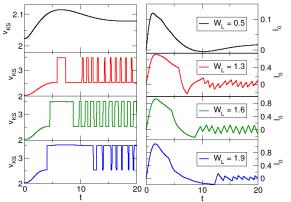
Time-dependent density in presence of discontinuity

Fermi energy $\varepsilon_F=1.5|V|$, on-site energy $\varepsilon_0=2|V|$, right bias $W_R=0$, interaction U=2|V|, $V_{\rm link}=0.3V$



for bias in step region of steady-state picture: no steady state; evolution towards a dynamic state of oscillating density around integer electron number

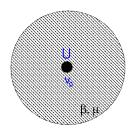
Time-dependent KS potentials and currents



in CB region: KS potential rapidly varying; train of rectangular steps; currents: sawtooth-like at impurity;

Ref: S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, E.K.U. Gross, PRL **104**, 236801 (2010)

Single-site model to construct finite temperature functional



4 states in Fock space: $|0\rangle$, $|\uparrow\rangle$, $|\downarrow\rangle$, $|\uparrow\downarrow\rangle$

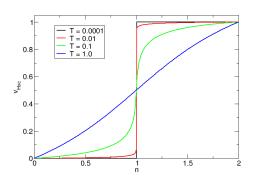
calculate density $n(v_0 - \mu) = n(\tilde{v}_0)$ invert analytically $\longrightarrow \tilde{v}_0(n)$

non-interacting KS system: density $n_s(\tilde{v}_s)$ invert analytically $\longrightarrow \tilde{v}_s(n_s)$

Hartree-xc potential: $v_{Hxc}(n) = \tilde{v}_s(n) - \tilde{v}_0(n)$

Hartree-xc potential for single-site model

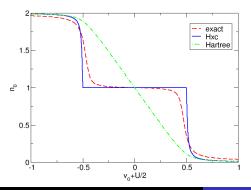
Hartree-xc potential for different temperatures (in units of U)



derivative discontinuity emerges naturally in the zero-temperature limit

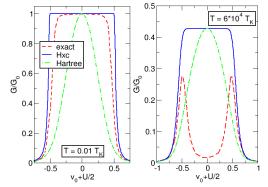
Density at zero temperature compared to exact results

<u>local approximation:</u> use single-site potential on impurity, vanishing KS potential in leads, should be reasonable approximation for weak coupling



 $U/\gamma = 100$; γ : DOS in wide-band limit; density pinned to 1 due to discontinuity;

Finite temperature conductance with Landauer



 $T << T_{\rm K}$: Kondo plateau in conductance due to discontinuity;

 $T>>T_{
m K}$: plateau *not* destroyed; no Coulomb blockade peaks

exact data from: Izumida, Sakai, J. Phys. Soc. Jpn., 2005

Finite temperature conductance with Landauer

two ways to understand T=0 result:

• Meir-Wingreen formula for conductance:

$$\frac{G}{G_0} = \gamma^2 |\mathcal{G}(\mu)|^2 \frac{\gamma - \operatorname{Im} \Sigma(\mu)}{\gamma}$$

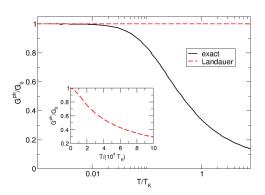
with many-body GF $\mathcal{G}(\omega)$ at impurity and self energy Σ at Fermi energy: $\operatorname{Im}\Sigma(\mu)=0\longrightarrow \operatorname{can}$ describe conductance by a KS potential $v_s=v_0+\operatorname{Re}\Sigma(\mu)$

Friedel sum rule (Langreth):

conductance determined by density n_0 on dot: $G = G(n_0)$ if KS potential gives good density \longrightarrow good conductance

Finite temperature conductance with Landauer

<u>note:</u> at particle-hole symmetric point $v_0 = -U/2$ our approximation gives *exact* KS potential for all temperatures



for finite T: Landauer does not give correct conductance although static KS potential is exact!

exact results from T.A. Costi, PRL (2000)

Dynamical xc corrections beyond Landauer

TDDFT formula for current to linear order in bias:

$$I = -G_0(V_L + V_{L,xc} - V_R - V_{R,xc}) \int d\omega \frac{\partial f_{\beta}(\omega)}{\partial \omega} \mathcal{T}(\omega)$$

with transmission function $\mathcal{T}(\omega)$ and dynamical xc correction

$$V_{\alpha,xc} = \lim_{i \to \infty} \sum_{j} f_{xc}(i\alpha, j) \delta n_j$$

→ explicit example that xc correction to conductance can be necessary and even exact (static) KS potential is not enough!!

A fashionable thing to do...

- Bergfield, Liu, Burke, Stafford, "Kondo effect given exactly by density functional theory", arXiv:1106.3104, June 17, 2011
- Tröster, Schmitteckert, Evers, "DFT-based transport calculations: Friedel's sum rule and the Kondo effect", arXiv:1106.3669, June 21, 2011
- Stefanucci, Kurth, "Towards a description of the Kondo effect using time-dependent density functional theory", arXiv:1106.3728, June 21, 2011

Collaborators:

On dynamical Coulomb blockade:

- G. Stefanucci, Univ. Tor Vergata, Rome, Italy
- E. Khosravi and E.K.U. Gross, MPI Halle, Germany
- C. Verdozzi, Univ. Lund, Sweden

On Kondo:

• G. Stefanucci, Univ. Tor Vergata, Rome, Italy

Summary

- Derivative discontinuity in transport
- absence of steady state in CB regime; instead: TD picture of CB as dynamical state of charging and discharging of weakly coupled system
- ullet conductance plateau as function of gate (Kondo) at T=0
- understand in terms of Meir-Wingreen formula and Friedel sum rule
- finite T: Landauer not enough; TDDFT dynamical xc corrections essential

If you want to describe strongly correlated systems, the derivative discontinuity is your friend!

