Steady-state density functional theory for finite-bias conductances

Stefan Kurth

1. Universidad del País Vasco UPV/EHU, San Sebastián, Spain
2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu
In collaboration with:

Gianluca Stefanucci
Univ. of Rome
“Tor Vergata”
Rome, Italy
Coulomb Blockade in Transport at Finite Bias

Experimental conductances of graphene quantum dot as function of gate and bias (J. Güttinger et al, PRL 103, 046810 (2009))

Questions:
- Can we design a proper DFT framework to calculate finite-bias conductances?
- If yes, what are the essential features for the xc potential(s) to describe the Coulomb blockade diamonds?
Outline

- Steady-state DFT formalism (i-DFT) for electron transport
 - Choice of variables and 1-1 map
 - Kohn-Sham system: Hxc gate and xc bias potentials
- Finite-bias Coulomb blockade: requirements on xc potentials
 - Single impurity Anderson model
 - Constant-Interaction Model for multiple levels
 - Approximate xc potentials for general case
- Finite-bias Coulomb blockade for benzene
- Summary
i-DFT for steady-state electron transport

Schematic transport setup with arbitrary molecular region \mathcal{R} (with molecular potential $v(r)$) and applied bias V, interested only in \textbf{steady state}

Choice of variables for steady-state DFT:

molecular steady-state density $n(r)$ in region \mathcal{R} and steady-state current I through \mathcal{R}
Theorem:
For any finite temperature the map \((v(r), V) \rightarrow (n(r), I))\) is invertible in a finite, gate-dependent window around bias \(V = 0\).

Proof: show that Jacobian

\[
J_0 = \text{Det} \begin{pmatrix}
\frac{\delta n(r)}{\delta v(r')} & \frac{\partial n(r)}{\partial V} \\
\frac{\delta I}{\delta v(r')} & \frac{\partial I}{\partial V}
\end{pmatrix}_{V=0}
\]

is non-vanishing.

note:
\[
\frac{\delta I}{\delta v(r')} \bigg|_{V=0} = 0 \quad \text{since at zero bias a variation of the gate does not induce a steady current.}\
\]
Lehmann representation of static density response function

$$\chi_0(r, r') = \frac{\delta n(r)}{\delta v(r')} \bigg|_{V=0} \text{ at finite temperature}$$

$$\chi_0(r, r') = \frac{1}{Z} \sum_{i,j} \frac{f_{ij}(r)f_{ij}(r')}{\Omega_{ij}^2 + \eta^2} \Omega_{ij} \left(e^{-\beta E_i} - e^{-\beta E_j} \right) e^{\beta \mu N_i}$$

with partition function Z, $f_{ij}(r) = \langle \Psi_i | \hat{n}(r) | \Psi_j \rangle - \delta_{ij} n(r)$, and $\Omega_{ij} = E_i - E_j \rightarrow$ for $E_i \leq E_j$, $\Omega_{ij} \leq 0$ and $(e^{-\beta E_i} - e^{-\beta E_j}) \geq 0 \quad \rightarrow$ Det[χ_0] < 0 for all $v(r)$.

Similarly, using Lehmann representation of $G_0 = \frac{\partial I}{\partial V} \bigg|_{V=0}$ (D. Bohr et al, EPL 73, 246 (2006)) one finds that $G_0 > 0 \quad \rightarrow J_0 = \text{Det}[\chi_0] G_0 < 0$ for all gates $v(r)$.
let \((n, I)\) be the density and steady-state current of an interacting system with gate potential and bias \((v, V)\). Under assumption of non-interacting \(v\)-representability there is a unique pair of potentials \((v_s, V_s)\) which reproduces \((n, I)\) in a non-interacting system →

Hxc gate and xc bias potentials

\[
\begin{align*}
v_{Hxc}[n, I](r) &= v_s[n, I](r) - v[n, I](r) \\
V_{xc}[n, I] &= V_s[n, I] - V[n, I]
\end{align*}
\]
i-DFT self-consistent KS equations

\[n(r) = 2 \sum_{\alpha=L,R} \int \frac{d\omega}{2\pi} f\left(\omega + s_\alpha \frac{V + V_{xc}}{2}\right) A_\alpha(r,\omega) \]

\[I = 2 \sum_{\alpha=L,R} \int \frac{d\omega}{2\pi} f\left(\omega + s_\alpha \frac{V + V_{xc}}{2}\right) s_\alpha T(\omega) \]

with KS partial spectral function
\[A_\alpha(r,\omega) = \langle r|G_s(\omega)\Gamma_\alpha(\omega)G_s^\dagger(\omega)|r\rangle, \] KS transmission function
\[T(\omega) \] and \[s_{R/L} = \pm 1 \]

Note: equivalent to Landauer+DFT formalism if \(V_{xc} \) set to zero
i-DFT expression for zero-bias conductance

linearize i-DFT selfconsistency conditions \rightarrow

exact expression for zero-bias conductance

$$G_0 = \frac{G_{0,s}}{1 - G_{0,s} \frac{\partial V_{xc}}{\partial I} \bigg|_{I=0}}$$

with zero-bias KS conductance $G_{0,s}$.

Remark: The $G_{0,s}$ of i-DFT is exactly the same as the usual Landauer-DFT zero-bias KS conductance!
construct xc potentials for single impurity Anderson model: single site (energy v) with a charging energy U for double occupancy coupled (coupling strength γ) to two leads (wide band limit, WBL)
Single impurity Anderson model (SIAM)

Density and current from spectral function (in WBL)

\[
N = \int \frac{d\omega}{2\pi} \left[f_\beta(\omega - V/2) + f_\beta(\omega + V/2) \right] A(\omega)
\]

\[
I = \frac{\gamma}{2} \int \frac{d\omega}{2\pi} \left[f_\beta(\omega - V/2) - f_\beta(\omega + V/2) \right] A(\omega)
\]

Model (interacting) spectral function of site connected to leads

\[
A(\omega) = \frac{N}{2} L_\gamma(\omega - \nu - U) + \left(1 - \frac{N}{2}\right) L_\gamma(\omega - \nu)
\]

with Lorentzian \(L_\gamma(\omega) = \frac{\gamma}{\omega^2 + (\frac{\gamma}{2})^2}\)

Reasonable in Coulomb blockade regime, i.e., for temperatures above the Kondo temperature \(T_K\)
SIAM: reverse engineering for xc potentials

Remark:
model spectral function gives exactly the same N and I as the rate equation approach (C.W.J. Beenakker, PRB 44, 1646 (1991))

Reverse engineering for xc potentials:
for given (N, I): numerically find the potentials (v, V) which yield this (N, I) first for the interacting case, then find non-interacting potentials (v_s, V_s) which also yield same densities \rightarrow construct $(H)_{xc}$ potentials as

$$\left(v_{Hxc}[N, I], V_{xc}[N, I]\right) = \left(v_s[N, I] - v[N, I], V_s[N, I] - V[N, I]\right)$$
SIAM: Hxc gate and xc bias potentials

SIAM (H)xc potentials from reverse engineering

Domain: $|I| \leq \frac{\gamma}{2}N$ for $N \in [0, 1]$ and $|I| \leq \frac{\gamma}{2}(2 - N)$ for $N \in [1, 2]$
SIAM: Hxc gate and xc bias potentials

- Hxc gate (xc bias) has smeared steps of height $U/2$ (U)
- DFT xc discontinuity at $N = 1$ in $v_{Hxc}[N, I = 0]$ bifurcates as current starts flowing
- xc bias has opposite sign of current, i.e., xc bias counteracts external bias
SIAM: Hxc gate and xc bias potentials

simple parametrization (low temperature regime)

parametrization of xc potentials for SIAM

\[
\nu\text{Hxc}[N, I] = \frac{U}{4} \sum_{s=\pm} \left[1 + \frac{2}{\pi} \arctan \left(\frac{N + sI - 1}{W} \right) \right]
\]

\[
V\text{xc}[N, I] = -U \sum_{s=\pm} \frac{s}{\pi} \arctan \left(\frac{N + sI - 1}{W} \right)
\]

parameter \(W = 0.16\gamma/U\) to obtain best fit to reverse-engineered xc potentials
Consider CIM with M degenerate single-particle (sp) levels ($\text{SIAM} \rightarrow M = 1$); same coupling γ to leads of all sp levels.

All sp levels equivalent \rightarrow H_{xc} gate and xc bias depend only on total number of electrons N and I.
Hxc potentials by reverse engineering of \((N, I)\) as function of \((v, V)\) obtained from Beenakker's rate equations (RE)

- again smeared steps of height \(U/2\) \((U)\) for Hxc gate (xc bias)
- edges at piecewise linear functions of \(\Delta_K^{(\pm)}(N, I)\)
- vertices in \((N, I)\) plane correspond to plateau values of \((N, I)\) in gate-bias scan of RE; can be obtained analytically
parametrization of degenerate CIM xc potentials

simple parametrization (low temperature regime)

\[v_{Hxc}^{(M)}[N, I] = \frac{U}{4} \sum_{K=1}^{2M-1} \sum_{s=\pm} \left[1 + \frac{2}{\pi} \tan^{-1} \left(\frac{\Delta_K^{(s)}(N, I)}{W} \right) \right] \]

\[V_{xc}^{(M)}[N, I] = -U \sum_{K=1}^{2M-1} \sum_{s=\pm} \frac{s}{\pi} \tan^{-1} \left(\frac{\Delta_K^{(s)}(N, I)}{W} \right) \]

\(\Delta_K^{(\pm)}(N, I) \) piecewise linear function of \(N \) and \(I \) which vanishes at step edges passing through \((N = K, I = 0) \) with positive (\(s = + \)) and negative (\(s = - \)) slopes
parametrization of CIM xc potentials for arbitrary sp level structure

\[v_{Hxc}[n,I] = \sum_{p=1}^{D} v^{(M_p)}_{Hxc} [N - N_p, I] + \frac{U}{4} \sum_{p=1}^{D-1} \sum_{s=\pm} \left[1 + \frac{2}{\pi} \tan^{-1} \left(\frac{N + \frac{2s}{\gamma} I - N_{p+1}}{W} \right) \right] \]

and similarly for xc bias \[V_{xc}[n,I] \]

\(D \): number of different sp energies (not counting degeneracies)
\(M_p \): degeneracy of \(p \)-th sp level
\(N_p \): maximal number of particles in first \(p - 1 \) degenerate levels
model benzene as a 6-level CIM with $\varepsilon_1 = -\varepsilon_6 = -5.08$ eV and $\varepsilon_2 = \varepsilon_3 = -\varepsilon_4 = -\varepsilon_5 = -2.54$ eV; $U = 0.5$ eV
solve i-DFT equations for (N, I) with model xc potentials, calculate differential conductance map $\frac{dI}{dV}$ as function of (v, V)
LB-DFT, i.e. neglecting xc bias, gives spurious Kondo plateaus at finite bias; low-bias CB not correctly described
i-DFT in simple approx. gets all low-bias features of the RE
size of RE matrix scales as $4^{N_{lev}}$; simple i-DFT doesn’t scale at all (2 coupled nonlinear eqs. for N and I)
Summary

i-DFT: DFT formulation for steady-state transport at arbitrary bias

- i-DFT based on 1-1 map (for small bias) between \((n(\mathbf{r}), I)\) and \((v(\mathbf{r}), V)\)
- i-DFT KS formulation with both Hxc gate and xc bias
- xc potentials from models to describe Coulomb blockade: step structures in xc potentials; xc derivative discontinuity of equilibrium DFT bifurcates as current starts flowing
- simple model xc potentials with correct step structure are sufficient to describe finite-bias CB correctly for not too large bias

Reference:

- Stefanucci, Kurth, arXiv:1505.07354