Calculating Electron Energy Loss Spectroscopy from First Principles

Duncan J. Mowbray

Nano-Bio Spectroscopy Group
European Theoretical Spectroscopy Facility (ETSF)
Donostia International Physics Center (DIPC)
Universidad del País Vasco (UPV/EHU)

MORE Nov. 4 2010
Electron Energy Loss Spectroscopy (EELS)

\[\Delta E_{\text{loss}} = - \int_{\gamma} \mathbf{F}_{\text{ind}} \cdot d\mathbf{r} = -Q \int dt \left. \frac{\partial \Phi_{\text{ind}}}{\partial t} \right|_{\mathbf{r}=\mathbf{r}_0} \]
Electron Energy Loss Spectroscopy (EELS)

\[\Delta E_{\text{loss}} = - \int F_{\text{ind}} \cdot dr \]
\[\Delta \tilde{E}_{\text{loss}}(q) = - \frac{Q}{\pi} \Im \left[\int_0^\infty d\omega \omega \int dt e^{-i\omega t} \tilde{\Phi}_{\text{ind}}(q, \omega) \right] \]
Electron Energy Loss Spectroscopy (EELS)

\[
\Delta E_{\text{loss}} = - \int_\gamma F_{\text{ind}} \cdot dr = -Q \int dt \frac{\partial \Phi_{\text{ind}}}{\partial t}\bigg|_{r=r_0}
\]

\[
\Delta \tilde{E}_{\text{loss}}(q) = -\frac{Q}{\pi} \Im \left[\int_0^\infty d\omega \omega \int dt e^{-i\omega t} \tilde{\Phi}_{\text{ind}}(q, \omega) \right]
\]

\[
\Delta \tilde{E}_{\text{loss}}(q, \omega) \sim -\Im \left[\varepsilon_m^{-1}(q, \omega) \right]
\]

Calculating EELS from First Principles
(6,4) Single-walled Carbon Nanotube
(a) Band Structure
(b) Density of States

(6,5) Single-walled Carbon Nanotube
(a) Band Structure
(b) Density of States
SWNT Van Hove Singularities

(6,4) Single-walled Carbon Nanotube
(a) Band Structure (b) Density of States

(6,5) Single-walled Carbon Nanotube
(a) Band Structure (b) Density of States

D. J. Mowbray Calculating EELS from First Principles
SWNT Excitations

(a) Band Structure

(b) Density of States

(6,4) Single-walled Carbon Nanotube

(6,5) Single-walled Carbon Nanotube

D. J. Mowbray
Calculating EELS from First Principles
Density Functional Theory (DFT) PBE Calculation (GPAW)
Tight Binding (TB) Calculation with $G_0 W_0$ Parameters
Tight Binding (TB) Calculation with LDA Parameters

- **Density Functional Theory (DFT) PBE Calculation (GPAW)**
- **Tight Binding (TB) Calculation with G_0W_0 Parameters**
- **Tight Binding (TB) Calculation with LDA Parameters**

Calculating EELS from First Principles

Density Functional Theory (DFT) PBE Calculation (GPAW)

Tight Binding (TB) Calculation with G_0W_0 Parameters

Tight Binding (TB) Calculation with LDA Parameters

Density Functional Theory (DFT) PBE Calculation (GPAW)

Tight Binding (TB) Calculation with $G_0 W_0$ Parameters

Tight Binding (TB) Calculation with LDA Parameters

Density Functional Theory PBE and Tight-Binding LDA Calculations are in good agreement.
Differences between DFT-PBE and TB-LDA are attributable to curvature effects.
Using TB $G_0 W_0$ parameters yields a stretching of the DOS by $\sim 10\%$.

This is attributable to both self-interaction errors in DFT, and the quasi-particle excitation corrections of $G_0 W_0$.

However, $G_0 W_0$ calculations are $O(N^4)$.

Other sources of error in DFT-RPA EELS calculations may be bigger than 10%.
Using TB G_0W_0 parameters yields a stretching of the DOS by $\sim 10\%$.

This is attributable to both self-interaction errors in DFT, and the quasi-particle excitation corrections of G_0W_0.

However, G_0W_0 calculations are $O(N^4)$.

Other sources of error in DFT-RPA EELS calculations may be bigger than 10\%.
Using TB $G_0 W_0$ parameters yields a stretching of the DOS by $\sim 10\%$.

This is attributable to both self-interaction errors in DFT, and the quasi-particle excitation corrections of $G_0 W_0$.

However, $G_0 W_0$ calculations are $\mathcal{O}(N^4)$.

Other sources of error in DFT-RPA EELS calculations may be bigger than 10%.

Using TB G_0W_0 parameters yields a stretching of the DOS by $\sim 10\%$.

This is attributable to both self-interaction errors in DFT, and the quasi-particle excitation corrections of G_0W_0.

However, G_0W_0 calculations are $O(N^4)$.

Other sources of error in DFT-RPA EELS calculations may be bigger than 10%.
Loss Function $\mathcal{S} \left[\varepsilon_{m}^{-1}(q, \omega) \right]$
RPA–DFT loss function reproduces the EELS spectra qualitatively.
RPA–DFT loss function reproduces the EELS spectra qualitatively.
RPA–DFT loss function reproduces the EELS spectra qualitatively.

3 unoccupied bands are required for every occupied band to obtain the spectra above ~10 eV.
RPA–DFT loss function reproduces the EELS spectra qualitatively.

3 unoccupied bands are required for every occupied band to obtain the spectra above ~10 eV.

Higher plane wave cutoffs are needed to properly describe dispersion at higher q values.
RPA–DFT loss function reproduces the EELS spectra qualitatively.

3 unoccupied bands are required for every occupied band to obtain the spectra above ~10 eV.

Higher plane wave cutoffs are needed to properly describe dispersion at higher q values.

These calculations only describe the collective modes.
RPA–DFT loss function reproduces the EELS spectra qualitatively.

3 unoccupied bands are required for every occupied band to obtain the spectra above ~10 eV.

Higher plane wave cutoffs are needed to properly describe dispersion at higher q values.

These calculations only describe the collective modes.

Can simple models also describe the collective modes, perhaps yielding new insight into the microscopic origin of the energy loss?
Loss Function $\mathcal{S} \left[\varepsilon_m^{-1}(q, \omega) \right]$

RPA–DFT loss function reproduces the EELS spectra qualitatively.

3 unoccupied bands are required for every occupied band to obtain the spectra above ~ 10 eV.

Higher plane wave cutoffs are needed to properly describe dispersion at higher q values.

These calculations only describe the collective modes.

Can simple models also describe the collective modes, perhaps yielding new insight into the microscopic origin of the energy loss?

Will the energy loss spectra depend on the electron beam energy?
Two-Fluid 2D Hydrodynamic Model

Single Fluid n_0

π Fluid $n_\pi = n_0/4$

σ Fluid $n_\sigma = 3n_0/4$

Plasmon Energies

1. Single-Fluid (SF)
2. Two-Fluid Thomas-Fermi Kinetic Energy (TF)
3. Dirac Exchange Energy (D)
4. Restoring Force ($\omega_\sigma \approx 16\ eV$) (R)

Plasmon Energies

1. Single-Fluid (SF)
2. Two-Fluid Thomas-Fermi Kinetic Energy (TF)
3. Dirac Exchange Energy (D)
4. Restoring Force ($\omega_\sigma \approx 16$ eV) (R)

Plasmon Energies

1. Single-Fluid (SF)
2. Two-Fluid Thomas-Fermi Kinetic Energy (TF)
3. Dirac Exchange Energy (D)
4. Restoring Force \((\omega_\sigma \approx 16 \text{ eV}) \) (R)

1. Single-Fluid (SF)
2. Two-Fluid Thomas-Fermi Kinetic Energy (TF)
3. Dirac Exchange Energy (D)
4. Restoring Force ($\omega_\sigma \approx 16$ eV) (R)

Plasmon Energies

1. Single-Fluid (SF)
2. Two-Fluid Thomas-Fermi Kinetic Energy (TF)
3. Dirac Exchange Energy (D)
4. Restoring Force ($\omega_\sigma \approx 16$ eV) (R)

Loss Function $\mathcal{S} \left[\varepsilon_{m}^{-1}(q, \omega) \right]$
TFDR reproduces the EELS spectra qualitatively.

D. J. Mowbray Calculating EELS from First Principles
TFDR reproduces the EELS spectra qualitatively.

The m=0 angular modes dominate the response for the high energy ~ 170 keV electron beam.
TFDR reproduces the EELS spectra qualitatively.

The $m=0$ angular modes dominate the response for the high energy ~ 170 keV electron beam.

For lower energy electron beams, or ion beams, the $m>0$ angular modes begin to dominate.
TFDR reproduces the EELS spectra qualitatively.

The \(m=0 \) angular modes dominate the response for the high energy \(\sim 170 \) keV electron beam.

For lower energy electron beams, or ion beams, the \(m>0 \) angular modes begin to dominate.

The dispersionless low energy peaks in the EELS are not from collective modes.
Loss Function \(-\mathcal{G}[\varepsilon_m^{-1}(\mathbf{q}, \omega)]\)

TFDR reproduces the EELS spectra qualitatively.

The \(m=0\) angular modes dominate the response for the high energy \(\sim 170\) keV electron beam.

For lower energy electron beams, or ion beams, the \(m>0\) angular modes begin to dominate.

The dispersionless low energy peaks in the EELS are not from collective modes.

The low energy \(\pi\) peaks and higher \(\sigma+\pi\) peaks arise from electrostatic repulsion between the \(\pi\) and \(\sigma+\pi\) orthogonal orbitals, and the 1:3 ratio of their densities.
Collaborators

- Angel Rubio (Universidad del País Vasco)
- Thomas Pichler (University of Vienna)
- Christian Kramberger (University of Vienna)
- Paola Ayala (University of Vienna)
- Zoran L. Mišković (University of Waterloo)
- Silvina Segui (Comisión Nacional de Energía Atómica)