Stability of Dirac cone in artificial graphene

F. Berardi1,2,3, E. Räsänen5, C. A. Rozzi4, P. Garcia Gonzalez4, A. Rubio1,2
1 NanoBio Spectroscopy group and ETSF Scientific Development Center, Diplo, Facs de Materiales, Universidad del Pais Vasco, E-20018 Donostia-San Sebastian, Spain.
2 Centro de Fisica de Materiales CSIC-UPV/EHU-MEP and DECF, E-20018 San Sebastian, Spain.
3 CNR - Istituto di Nanoscienze, Centro S3, Modena, Italy.
4 Diplo, De Fisica Tecnica de la Materia Condensada and IFW-HC, Universidad Autonoma de Madrid, Spain.
5 Nanoscience Center, Department of Physics, University of Jyvaskyla, FI-40811, Jyvaskyla, Finland.
6 CMM - Institute de Nanociencia, Centro SI, Madrid, Italy.

What is the Artificial Graphene (AG)?
It's an artificial material that exploits the properties of graphene in a tunable setup. Actually it has been realized 3 different physical implementations:
- 2D electron gas in a semiconductor heterostructures
- Metal surfaces shaped by molecules
- Trapped cold atoms in an optical lattice

Benefits of using AG:
- Great spatial accuracy to better control Dirac Fermions
- Lattice constants from tenths nm to hundreds nm
- Alternative testing, like Kekulé distortion

Previous works:
- For electrons confined in GaAs quantum dots:
 - Confirmed by DFT results (Räsänen, Rozzi [2]).

Present work:
- Study of the stability of AG Dirac cone in GaAs QD with respect to changes in the following parameters:
 - Dots potential shape
 - Dots potential radius
 - Dislocations of atoms position
 - Lattice constant change.

AG system studied

System details
- Dot-dot distance = 150 nm.
- N = 1 electron per dot.
- Hard-wall potential (or exponential) \(V(x) = V_0 \exp(-x/a) \)
- Potential radius = 5.25 nm
- Potential depth = \(V_0 = 0.6 \text{ meV} \)

For reproducing electrons in GaAs QD:
- Electron effective mass \(m^* = 0.067 \)
- Dielectric constant \(\varepsilon = 12.4 \)

Change of lattice constant

Dot-dot distance from 105 nm to 250 nm (8190 for mGGA) and the Dirac cone is maintained.

Results:
- We can see that the system experiences a transition towards metallic for an increasing dot-dot distance.
- The process is faster in presence of \(e+e \) interaction than for IP calculation.

Future developments:
- Spin-polarized case
- Studying effect of repulsive potentials in triangular lattices instead of attractive potentials in honeycomb lattices
- Optical properties

Bibliography