Bioluminescence
An introduction

Leonardo Andrés Espinosa Leal1,2

1Nano-bio Spectroscopy Group. European Theoretical Spectroscopy Facility (ETSF) nanoquanta. Network of Excellence.

2Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco, Centro Mixto UPV-CSIC.

April of 2008
beamertheme Bogota copyright Leonardo Andrés Espinosa Leal
e-mail: laespinosa001@ikasle.ehu.es
Abstract

In this talk, I will show you a fast overview on bioluminescence phenomena, main characteristics and a very basic theoretical description using first principles tools.
Outline

1. **Introduction: Theory of Luminescence**
 - Characteristics of Luminescence

2. **Luminescence of Living organisms**
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminiscence

3. **The primary Bioluminescents Systems**
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. **Conclusion**

What is Luminescence?

“weak glow”

Luminescence as a weak cold glow

- Rotting wood
What is Luminescence?

“weak glow”

Luminescence as a weak cold glow
- Rotting wood
- Certain insects
What is Luminescence?

“weak glow“

Luminescence as a weak cold glow

- Rotting wood
- Certain insects
- Mushrooms
What is Luminescence?

“weak glow“

Luminescence as a weak cold glow
- Rotting wood
- Certain insects
- Mushrooms
- fishes
What is Luminescence?
“weak glow“

Luminescence as a weak cold glow
- Rotting wood
- Certain insects
- Mushrooms
- fishes
- Microorganisms
What is Luminescence?

“weak glow”

Luminescence as a weak cold glow

- Rotting wood
- Certain insects
- Mushrooms
- Fishes
- Microorganisms
- Sea algae
What is Luminescence?

“weak glow”

Luminescence as a weak cold glow

- Rotting wood
- Certain insects
- Mushrooms
- Fishes
- Microorganisms
- Sea algae
- Minerals
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminiscence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion
Emission of energy in the form of visible light during chemical or biochemical processes is called Chemiluminescence (CL) or Bioluminescence (BL).
Emission of energy in the form of visible light during chemical or biochemical processes is called Chemiluminescence (CL) or Bioluminescence (BL).

1. The energy released should be higher than that of the electronically excited product or intermediate molecules.
Introduction

Emission of energy in the form of visible light during chemical or biochemical processes is called Chemiluminescence (CL) or Bioluminescence (BL).

1. The energy released should be higher than that of the electronically excited product or intermediate molecules.
2. The product must be a fluorescent molecule so that the transformation of the excited molecule to the ground state is accompanied by visible light emission, or the reaction mixture has to include energy acceptor molecules with fluorescent properties.
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminescence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion
Introduction: Theory of Luminescence
Luminescence of Living organisms
The primary Bioluminescents Systems
Conclusion

Main aspects
Mechanisms of CL and BL
Chemiluminescence
Bioluminiscence

Mechanisms of chemiluminescence and Bioluminescence
Formation of a product whose subsequent transformation are sufficiently exothermic to emit visible light (400nm - 700 nm).
Mechanisms of chemiluminescence and Bioluminescence

1. Formation of a product whose subsequent transformation are sufficiently exothermic to emit visible light (400nm - 700 nm).

2. Transition of a some reaction intermediate to the electronically excited state.
Mechanisms of chemiluminescence and Bioluminescence

1. Formation of a product whose subsequent transformation are sufficiently exothermic to emit visible light (400nm - 700 nm).
2. Transition of a some reaction intermediate to the electronically excited state.
3. Light emission from the excited state that has been formed.
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminiscence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion
Chemiluminescence Reactions

The most effective CL reactions can be divided into three groups according to mechanism of *chemiexitation*.

1. **CL of Electron Transfer.**
2. **CL of Singlet Oxygen.**
3. **CL Reactions of Peroxide Decomposition.**

- **CL Reactions with Electron Transfer.**
 - CL of Oxalates.
 - CL of Acridium Compounds.
 - CL of Dioxetanes.

- **Cellular CL.**
 - Recombination of free ion radicals.
 - Oxidation of anion radicals of aromatic hydrocarbons.

- **Emision of red ligth is observed during oxidation of hydrogen peroxide by chloride in alkali media.**

 Observed when Intermediate cycloperoxides, 1,2-dioxetane decompose.
Chemiluminescence Reactions

The most effective CL reactions can be divided into three groups according to mechanism of chemiexitation.

1. **CL of Electron Transfer.**

 - Recombination of free ion radicals., oxidation of anion radicals of aromatic hydrocarbons.

2. **CL of Singlet Oxygen.**

3. **CL Reactions of Peroxide Decomposition.**

 - CL Reactions with Electron Transfer.
 - CL of Oxalates.
 - CL of Acridium Compounds.
 - CL of Dioxetanes

Cellular CL.

Recombination of free ion radicals., oxidation of anion radicals of aromatic hydrocarbons.

Emission of red light is observed during oxidation of hydrogen peroxide by chloride in alkali media.

Observed when Intermediate cycloperoxides, 1,2-dioxetane decompose.
Chemiluminescence Reactions

The most effective CL reactions can be divided into three groups according to mechanism of chemiexitation.

1. CL of Electron Transfer.
2. CL of Singlet Oxygen.
3. CL Reactions of Peroxide Decomposition.
 - CL Reactions with Electron Transfer.
 - CL of Oxalates.
 - CL of Acridium Compounds.
 - CL of Dioxetanes.

- Recombination of free ion radicals, oxidation of anion radicals of aromatic hydrocarbons.
- Emission of red light is observed during oxidation of hydrogen peroxide by chloride in alkali media.

The most effective CL reactions can be divided into three groups according to mechanism of chemiexcitation.

1. CL of Electron Transfer.
2. CL of Singlet Oxygen.
3. CL Reactions of Peroxide Decomposition.
 - CL Reactions with Electron Transfer.
 - CL of Oxalates.
 - CL of Acridium Compounds.
 - CL of Dioxetanes
 - Cellular CL.

- Recombination of free ion radicals, oxidation of anion radicals of aromatic hydrocarbons.
- Emission of red light is observed during oxidation of hydrogen peroxide by chloride in alkali media.
- Observed when Intermediate cycloperoxides, 1, 2-dioxetane decompose.
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminiscence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion
Main Aspects

My fancies are fireflies,
Specks of living light
twinkling in the dark.

by Rabindranath Tagore,
Fireflies.
Introduction: Theory of Luminescence

Luminescence of Living organisms

The primary Bioluminescents Systems

Conclusion

Main Aspects

My fancies are fireflies,
Specks of living light
twinkling in the dark.

by Rabindranath Tagore,
Fireflies.

- BL is the luminescence that occurs in
 or is derived from living organisms.

Bioluminescence: An introduction
Main Aspects

My fancies are fireflies, Specks of living light twinkling in the dark. by Rabindranath Tagore, Fireflies.

- BL is the luminescence that occurs in or is derived from living organisms.
- The basis of BL is a CL reaction catalyzed by a specific enzyme.
Main Aspects

- BL is the luminescence that occurs in or is derived from living organisms.
- The basis of BL is a CL reaction catalyzed by a specific enzyme.
- The Quantum yields of BL reactions usually lie between 0.1-0.9.
Main Aspects

- BL is the luminescence that occurs in or is derived from living organisms.
- The basis of BL is a CL reaction catalyzed by a specific enzyme.
- The Quantum yields of BL reactions usually lie between 0.1-0.9.
- All proteins catalysts of BL reactions isolated are oxygenases (luciferin-luciferase or Photoproteins).

by Rabindranath Tagore,
Fireflies.
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminescence

3. The primary Bioluminescent Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion
Luciferins-Luciferase

Peer to peer, illuminating

Figure: Reaction scheme for bioluminescence generation via luciferase-catalyzed conversion of luciferin (L2911, L2912, L2916) to oxyluciferin.
Luciferins-Luciferase

Peer to peer, illuminating

Luciferins are a class of small-molecule substrate each for their corresponding protein enzyme luciferase.

Luciferin and luciferase are not specific molecules. They are generic terms for a substrate and its associated enzyme (or protein) that catalyze a light-producing reaction.

Figure: Reaction scheme for bioluminescence generation via luciferase-catalyzed conversion of luciferin (L2911, L2912, L2916) to oxyluciferin.
Luciferins-Luciferase
Peer to peer, illuminating

- Luciferins are a class of small-molecule substrate each for their corresponding protein enzyme luciferase.
- Luciferins are oxidized in the presence of the enzyme luciferase to produce oxyluciferin and energy in the form of light.

- Luciferin and luciferase are not specific molecules. They are generic terms for a substrate and its associated enzyme (or protein) that catalyze a light-producing reaction.

Figure: Reaction scheme for bioluminescence generation via luciferase-catalyzed conversion of luciferin (L2911, L2912, L2916) to oxyluciferin.
Luciferins-Luciferase

Peer to peer, illuminating

- Luciferins are a class of small-molecule substrate each for their corresponding protein enzyme luciferase.
- Luciferins are oxidized in the presence of the enzyme luciferase to produce oxyluciferin and energy in the form of light.
- There are five general types of luciferins.

- Luciferin and luciferase are not specific molecules. They are generic terms for a substrate and its associated enzyme (or protein) that catalyze a light-producing reaction.

Figure: Reaction scheme for bioluminescence generation via luciferase-catalyzed conversion of luciferin (L2911, L2912, L2916) to oxyluciferin.
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminescence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. conclusion

Bioluminescence: An introduction
BL system of the Firefly

- This reaction have a higher Quantum yield (~ 0.9).

\[\text{ATP} + \text{O}_2 + \text{Mg}^{2+} \rightarrow \text{Luciferyl adenylicate} + \text{pyrophosphate} + \text{Cyclic peroxide dioxetanone} + \text{AMP} \]

\(^b \) J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (∼ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)

b J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (~ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)

b J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (~ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
- Processes:

\[\text{ATP} + \text{O}_2 + \text{Mg}^{2+} \rightarrow \text{Luciferyl adeny}^{-}\text{late} + \text{pyrophosphate.} \]

Cyclic peroxide dioxetanone + AMP

\(^b\) J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (∼0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
- Processes:
 - ATP + O$_2$ + Mg$^{2+}$

b J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (\(\sim 0.9\)).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
- Processes:
 - ATP + \(O_2 + Mg^{2+}\)
 - Luciferyl adenylate + pyrophosphate.

\(b\) J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (∼ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
- Processes:
 - ATP + O₂ + Mg²⁺
 - Luciferyl adeny late + pyrophosphate.
 - Cyclic peroxide dioxetanone + AMP

\[\text{Oxyluciferin} \]

\[+ \text{hv} \]

\[\text{CO}_2 + \text{AMP} + \text{H}^+ \]

b J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (~ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
- Processes:
 - $\text{ATP} + O_2 + Mg^{2+}$
 - Luciferyl adenylate+pyrophosphate.
 - Cyclic peroxide dioxetanone+AMP
- Some experimental and theoretical resultsa

b J. Am. Chem. Soc. 2007, 129, 8756-8765
BL system of the Firefly

- This reaction have a higher Quantum yield (≈ 0.9).
- Firefly Luciferase (*Photinus pyralis* NORTH AMERICAN FIREFLY)
 - Processes:
 - ATP + O$_2$ + Mg$^{2+}$
 - Luciferyl adenylylpyrophosphate.
 - Cyclic peroxide dioxetanone + AMP
- Some experimental and theoretical results
- Simulation of certain processes

b J. Am. Chem. Soc. 2007, 129, 8756-8765
Outline

1. Introduction: Theory of Luminescence
 - Characteristics of Luminescence

2. Luminescence of Living organisms
 - Main aspects
 - Mechanisms of CL and BL
 - Chemiluminescence
 - Bioluminiscence

3. The primary Bioluminescents Systems
 - Structures of Luciferins-Luciferase
 - BL system of the Firefly
 - BL in others systems

4. Conclusion

Other sets of Luciferin-Luciferase systems
Other sets of Luciferin-Luciferase systems

- **BL Systems of Bacteria.**

 Common in seawater and in the guts of organisms. Also used in the lure of Anglerfish and in the ventral counterillumination of the bobtail squid (Euprymna scolopes)

- **Reduced riboflavin phosphate (FMNH₂).**

- **Yellow Fluorescent Protein (YFP).**
Other sets of Luciferin-Luciferase systems
Other sets of Luciferin-Luciferace systems

- Coelenterazine BL Systems.
 Different species employ photoproteins or a variety of luciferases to trigger luminescence from coelenterazine. The luminous groups include Scyphozoa ("true" jellyfish), Hydrozoa (hydroids, siphonophores, and hydromedusae), and Anthozoa (sea pens and sea pansies).

- Imidazopyrazine.

- Bioluminescence is widespread in all major Cnidarian groups except for the Cubozoa.
Other sets of Luciferin-Luciferase systems

Cypridina BL.
Common in seawater and in the guts of organisms. Also used in the lure of Anglerfish and in the ventral counterillumination of the bobtail squid (Euprymna scolopes). Most pelagic crustacean groups (with the exception of isopods) have luminous members. These include copepods, ostracods, amphipods, decapod shrimp and euphausiids (krill). Amazingly, three of the major marine luciferins are used in various crustaceans (ostracod-type luciferin, dinoflagellate-type luciferin, coelenterazine). Crustaceans are also the most likely source for coelenterazine in the sea, as there is evidence that they can produce it.

Imidazopyrazine derivative.
Pycnogonids (sea spiders).
Other sets of Luciferin-Luciferase systems

- Cypridina BL.

Common in seawater and in the guts of organisms. Also used in the lure of Anglerfish and in the ventral counterillumination of the bobtail squid (Euprymna scolopes) Most pelagic crustacean groups (with the exception of isopods) have luminous members. These include copepods, ostracods, amphipods, decapod shrimp and euphausiids (krill). Amazingly, three of the major marine luciferins are used in various crustaceans (ostracod-type luciferin, dinoflagellate-type luciferin, coelenterazine). Crustaceans are also the most likely source for coelenterazine in the sea, as there is evidence that they can produce it.

- Imidazopyrazine derivative.

- Pycnogonids (sea spiders).
Other sets of Luciferin-Luciferase systems

If you see luminous sparkles in the wake of a boat, or in splashing waves on the beach, it is probably coming from dinoflagellates. These single-celled protists can be photosynthetic, or they may be heterotrophic (eat other organisms), or some combination of the two. They may become very abundant during red tides, and are thought to use their light as a burglar alarm to attract predators to animals that are grazing on them.
Other sets of Luciferin-Luciferase systems

- **Dinoflagellate BL System.**

 If you see luminous sparkles in the wake of a boat, or in splashing waves on the beach, it is probably coming from dinoflagellates. These single-celled protists can be photosynthetic, or they may be heterotrophic (eat other organisms), or some combination of the two. They may become very abundant during red tides, and are thought to use their light as a burglar alarm to attract predators to animals that are grazing on them.

- **Tetrapyrrole.**

- **Pyrocystis fusiformis.**
Bioluminescence is a very important physical phenomena until now not well understand but very common in undersea organisms, some kind of mushrooms and insects. The physical knowledge of Bioluminescence can be important for ecological generation of light and like source of energy.
Bibliography

[D.R. Vij]

[Thérése Wilson and J. Woodland Hastings]