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Abstract

This thesis is devoted to the formulation and implications of the time-dependent density

functional theory (TDDFT). The work is divided into two main parts. In the first part

we develop rigorous theorems for the density-potential mapping in quantum many-body

systems on a lattice. We prove the uniqueness of the TDDFT map and demonstrate

that a given density is v-representable if both the initial many-body state and the den-

sity satisfy certain well-defined conditions. In particular, we show that for a system

evolving from its ground state, any density with a continuous second time derivative is

v-representable .

Then the lattice TDDFT formulation is extended to cover a system of interacting lattice

electrons strongly coupled to cavity photons. We prove that under some mathematical

conditions the electron-photon wave function is a unique functional of the electronic

density and the expectation value of the photonic coordinate. Then we further generalize

the ground state v-representability theorem to include the ground state of a general

lattice electron-photon Hamiltonian.

The second part of this thesis is focused on the applications of the analytic density-

potential maps in TDDFT and the current-potential map in the time-dependent current

density functional theory (TDCDFT).

We use the analytic lattice map to analyze and quantify the role of non-adiabaticity

(”memory effects”) in the exchange-correlation functional for describing non-linear dy-

namics of many-body systems. Studying time-dependent resonant processes using the

available functional in TDDFT is a big challenge and that is due to their strong non-

linear and non-adiabatic character. Here we study the Rabi oscillations within the

solvable 2-site Hubbard model as an example for the resonant processes. We construct

the exact adiabatic exchange-correlation functional and show that it cannot reproduce

resonant Rabi dynamics correctly. It turns out the non-adiabatic contribution to the ex-

act exchange-correlation potential is significant throughout the dynamics and it is small

only when the ground state population is significant. Afterwards we reconstruct the ex-

act time-dependent exchange-correlation functional within the two-level approximation.

This fully non-adiabatic and explicit density functional captures Rabi dynamics both

for resonant and detuned oscillations.

Finally we apply the analytic current-potential maps of TDCDFT in a completely dif-

ferent context. We use them to inverse engineer analytically solvable time-dependent

quantum problems. In this approach the driving potential (the control signal) and

the corresponding solution of the Schrödinger equation are analytically parametrized in

terms of the basic TD(C)DFT observables.

We describe the general reconstruction strategy and illustrate it with few explicit exam-

ples ranging from real space one-particle dynamics to controlling quantum dynamics in



a discrete space. In particular we construct a time-dependent potential which generates

prescribed dynamics on a tight-binding chain. We also apply our method to the dy-

namics of spin-1/2 driven by a time-dependent magnetic field and construct an analytic

control pulse for the quantum NOT gate.
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Chapter 1

Introduction

The physical and chemical properties of systems composed of low energy particles are

determined by the non-relativistic Schrödinger equation . This equation has been proven

extremely successful (essentially exact) in describing quantum mechanical systems, e.g.

atoms and molecules, but unfortunately it can be solved efficiently only for systems with

very few interacting particles.

The Schrödinger equation for a system of N interacting particles in a three dimensional

space is a partial differential equation with 3N special coordinates which are mutu-

ally coupled through the Coulomb interaction. This makes the complexity of the wave

function to increase exponentially with the number of particles until eventually we en-

counter an “exponential wall” .[1] To put it in perspective, to discretize the space even

for a “humble” system with around 20 electrons (For example, a water molecule, or a

Titanium atom),the number of bits to store the wave function can easily exceed the

estimated number of atoms in the observable universe 1072 − 1082. 1

1To make this fact more clear let’s make crude estimation of amount of memory occupied by the
discretized wave function. For the discretization we define a mesh with M points in each direction. by
choosing the proper basis set for this discrete space we can expand the state of the system

|Ψ(t)〉 =
∑

r1,r2,...,rN

ψ (r1, r2, ..., rN ; t) |r1〉|r2〉 · · · |rN 〉, (1.1)

where ri = (xi, yi, zi) is the position of the ith electron which takes values on discrete points.
ψ (r1, r2, ..., rN ; t) is the interpretation of the wave function in a discrete space. In total there are
M3N ψ’s and if each occupies a bits we will need the total memory R of

R = aM3N . (1.2)

So if we just decide to choose M = 10, 1000 mesh point in total, to store the state of a caffeine
molecule,C8H10N4O2, with 102 electrons we need at least 5× 10287 TB. This is considering each ψ only
takes x = 4 bits to store. To put things in perspective, it is around 5.5 × 10281 times the estimated

1
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However there is an ingenious and extremely nontrivial way to treat this problem and

that is by using the one-to-one correspondence between single particle density and the

external potential in the Density Functional Theory (DFT) and its time-dependent ver-

sion (TDDFT).

DFT is a formulation of the stationary quantum mechanics derived from the time-

independent Schrödinger equation which states that the ground state density of many-

body quantum system is uniquely determined by the external potential.[2] In other

words, there is a unique density for a given external potential which minimizes the

total energy functional of the system. This means that to calculate any observable

in the ground state, in principle, all we need is the ground state density and, thus,

the complicated many-body wave function of the ground state does not contain any

information in addition to that in the single particle ground state density.

The pinnacle of this theory is the Kohn-Sham construction which makes DFT usable

in practice.[3] By definition the Kohn-Sham system is an auxiliary system of N non-

interacting electrons in an effective external potential which has the same ground density

as the original one with N interacting electrons. The effective, Kohn-Sham, potential is

a unique functional of the density and this reduces the static many-body problem to a

self consistent Hartree-like problem. 2

Time-dependent density functional theory (TDDFT) is a non-trivial extension of DFT

to non-stationary systems in the presence of time-dependent external potentials. This

theory is rapidly becoming the method of choice for modeling dynamics of the realistic

many-body systems. The reasons for the popularity of TDDFT are the same as those

for the ground state DFT. It significantly reduces complexity of the problem by allowing

to calculate the density through an auxiliary system of non-interacting Kohn-Sham par-

ticles. The possibility of such a reduction rests on two fundamental mathematical state-

ments: (i) the one-to-one map between the density and the external potential and (ii)

v-representability of the density both in the interacting and non-interacting system, i. e.

the time-dependent density can be as a result of a time evolution driven by an external

scalar potential. The first statement, known as a mapping theorem, guarantees that

the many-body wave function and, thus, any observable are unique functionals of the

size of the world wide web (Internet) at 2010 and 10205 times the number of atoms in the observable
universe.

2 An explicit definition of the Kohn-Sham system is given in chapter 2.
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density. The v-representability is required for both the interacting and non-interacting

systems to guarantee the Kohn-Sham construction.

Finding a rigorous proof for the v-representability and uniqueness of the map is a highly

nontrivial and, to some extend, still an open problem. Moreover, having such a proof

of the concept does not necessarily translate to a practical use unless we either discover

the universal map explicitly, which is highly unlikely, or develop a proper approximation

which captures properties of the system. More on the latter will come later.

The first mapping theorem for the static DFT was presented in a paper by Hoheberg and

Kohn [2] while a general solution of the more tricky v-representability problem appeared

much later and only for lattice systems. [4, 5]

Proving the corresponding theorems in TDDFT turned out to be even more difficult

because of the absence of minimum principle for the dynamics. Thus one has to use

equations of motion to prove any mappings statement. In fact, only 20 years after the

first paper on DFT, Runge and Gross (RG) succeeded to find a sufficiently general proof

of the TDDFT mapping theorem for a class of analytic in time (t-analytic) potentials

[6].

More than a decade after an attempt to attack the more tricky problem of time-

dependent v-representability has been performed in Ref. [7] by assuming t-analyticity both

for potentials and for allowed densities. Under this restriction a formal power series for

the potential can be uniquely reconstructed from a given Taylor expansion of the density.

Unfortunately the convergence of that series is not proven up to now, and thus a com-

plete solution of the v-representability problem within the series expansion technique

is still missing. We note that the issues of t-analyticity and a uniform convergence of

power series in quantum dynamics are not as exotic as it may appear at the first sight

[8–10]. Despite a number of indications[11, 12] that t-analyticity was not a fundamental

limitation of the theory, a question of a more general and clean justification of TDDFT

remained open for many years.

In the past few years it has been recognized [9, 13–18] that the existence of all TDDFT-

type theories is equivalent to the solvability of a certain universal nonlinear many-body

problem which determines the potential and the many-body wave function in terms

of a given basic observable. Mathematically this universal problem can be posed in
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two different forms. The first possibility is to view it as a Cauchy problem for a spe-

cial nonlinear Schrödinger equation (NLSE) [9, 13–16]. The uniqueness and the exis-

tence of solutions to this NLSE are equivalent, respectively, to the mapping and the

v-representability problems in TDDFT. Alternatively it can be formulated as a fixed

point problem for a certain nonlinear map in the space of potentials [17, 18]. First ap-

plications of the two formulations above appeared almost simultaneously in Refs. [16]

and [17].

The fixed point approach has been used in Ref. [17] to address the existence of the “classi-

cal“ TDDFT in its original Runge-Gross form. In this work the t-analyticity requirement

was relaxed and effectively replaced by a more physical (though still unproven) assump-

tion – a boundness of a certain generalized response function related to a stress-density

correlator.

A rigorous formulation of a time-dependent current density functional theory (TD-

CDFT) on a lattice was presented in Ref. [16] within NLSE formulation of the problem.

The lattice TDCDFT turned out to be the first and, in fact, the simplest example of a

TDDFT-type theory for which both the mapping and the v-representability theorems

have been proven without any unjustified assumption.

However despite all the efforts, a rigorous proof of the TDDFT formalism is yet to

be presented. Moreover, in the most general setting the v-representability problem re-

mains open till now. In chapter 3 we answer the fundamental questions of TDDFT by

reformulating the density-potential map for a lattice. We realize that this reduction

massively simplifies the mathematical structure of the problem. We further develop

the lattice NLSE technique of Ref. [16] to address a long standing problem of TDDFT

for lattice many-body systems. It may seem surprising, but before this work even the

Runge-Gross mapping theorem for t-analytic potentials for the lattice TDDFT was ab-

sent. This should be contrasted to the lattice TDCDFT where the standard power series

argumentation can be easily adapted [19]. Many discussions of technical and conceptual

difficulties of the lattice TDDFT can be found in the literature [20–24]. We demon-

strate that the lattice analogue of NLSE answers to those conceptual problems. We

prove both the uniqueness and existence theorems for the lattice TDDFT and analyze

conditions which have to be imposed on the initial state and the density to guarantee v-

representability. In particular we demonstrate that practically any properly normalized
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density is locally v-representable provided the dynamics start from the ground state.

These results as the first rigorous proof of the TDDFT formalism put applications of

TDDFT to various lattice models [20–24, 24–28] on a firm ground, and shed new light

on the general mathematical structure of TDDFT.

Afterwards we generalize the lattice TDDFT to include lattices strongly coupled to the

quantum light. This is in contrast to the standard TDDFT which assumes the system

is driven by a classical time-dependent electric field. Although the TDDFT approach

is sufficient for most typical situations in quantum chemistry and condensed matter

physics, however, in the recent years, with the impressive progress in the fields of cavity

and circuit quantum electrodynamics (QED) it has been made possible to experimentally

study systems interacting strongly with quantum light, like atoms in optical cavity [29–

31], superconducting qubits and quantum dots [32–35] , trapped ions [36] and molecules

interacting with cavity photons. [37–39].

Recently a generalization of TDDFT mapping theorem for quantum many-electron sys-

tems coupled to cavity photons has been proposed [40, 41]. This theory, called QED-

TDDFT, relies on the statement that there exists a unique map from a set of basic

variables, the density and the expectation value of the Bosonic field, to the set of driv-

ing potentials. The latter consists of a classical external electromagnetic field driving

the electronic subsystem and an external radiative source, e.g. external current, stim-

ulating the photonic modes. In Ref. [40] the uniqueness of this generalized mapping

has been demonstrated using the Taylor expansion technique under the previously dis-

cussed t-analyticity assumption. [6] However, as we discussed, the Taylor expandability

is not a natural criteria deduced from the equations of motion. In addition the v-

representability problem, convergence of the Taylor series, is yet to be addressed.

In chapter 4 we extend the NLSE formalism of chapter 3 to cover the situation where

the lattice electrons are interacting strongly with quantized photonic modes. First we

demonstrate the procedure by proving the QED-TDDFT map for the simplest nontrivial

system of an electron on a two-site lattice (a Hubbard dimer) coupled to a single photonic

mode. It is worth noting that indeed, the QED-TDDFT formulation for a dimer coupled

to a quantum Bose field has its own value. This system is equivalent to well known and

popular models as the quantum Rabi model and the spin-boson model [42–44] which have

a wide variety of applications ranging from quantum optics [45] and molecular physics
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[46] to the magnetic resonance in solid state physics. [47] We prove that, provided some

well-defined conditions are fulfilled, there exists a unique mapping from the set of basic

variables to the driving potentials. Then we extend the QED-TDDFT mapping theorem

to the general case of N interacting electrons on an M -site lattice coupled to multiple

photonic modes. We also prove that, similar to the standard lattice TDDFT, the local

existence/v-representability is guaranteed if the dynamics start from the ground state of

a lattice Hamiltonian. These rigorous statements answer both the v-representability and

uniqueness problems of QED-TDDFT for lattices.

Next, we move our attention to the direct consequence of the TDDFT and that is the

functional dependence of the external potential on the density. As a result of the TDDFT

mapping provided a density is non-interacting v-representable , its dynamics can be

reproduced by an auxiliary system of non-interacting Kohn-Sham particles with a unique

effective Kohn-Sham potential. Traditionally the Kohn-Sham potential is expressed as a

sum of three terms with each having a particular physical significance. The first term is

the external potential of the interacting system and the second term, Hartree potential,

is a mean-field Coulomb interaction through the density. The remaining potential from

the interaction is put in a term called exchange-correlation potential.

However, the functional dependence of the exchange-correlation potential on the den-

sity, except for very special occasions, is unknown and most probably never be known.

So not surprisingly, it has been an ever continuing quest to better approximating it

.[48, 49] The TDDFT formalism, with the available approximations to the exchange-

correlation functional, has been greatly successful in describing optical properties of a

large variety of molecules and nanostructures. [50–52] However these approximations

exhibit serious deficiencies in the description of non-linear processes, long range charge

transfer [53–55] and double excitations [56–58], to mention a few.

The theoretical challenge is to improve the available functionals in order to capture the

nonlocality both in space and time of the exact exchange-correlation functional which

depends on the history of the density, the initial (interacting) many-body state and the

initial Kohn-Sham state.[59–62] Currently almost all of the TDDFT calculations are

done under the adiabatic approximation which assumes the instantaneous density is the

ground state of density of the system. This approximation is completely local in time

and neglects both the history and the initial state dependence of the exact functional.
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In chapter 5 we exemplify the failure of the adiabatic approximation of the exchange-

correlation functional in reproduction of the non-linear dynamics for a solvable lattice

model, 2-site Hubbard model.[63–65] Specifically, we study resonant and slightly de-

tuned resonance Rabi oscillations where the population of states changes dramatically

in time. We first derive the exact ground state Hartree-exchange-correlation (Hxc) func-

tional for the Hubbard dimer using the Levy-Lieb constrained search. [66–68] Then the

functional is used in a TDDFT context with the instantaneous time-dependent density

as the input which constitutes the exact adiabatic approximation. By carefully studying

and quantifying the dynamics produced by TDDFT with the adiabatic Hxc potential

we demonstrate that it fails both quantitatively and qualitatively to describe Rabi os-

cillations. In addition by comparing it with the exact Hxc functional calculated from

the propagated density we identify the source of the failure. Afterwards we apply the

analytic density-potential map for lattice systems of chapter 3 to derive an explicit,

fully non-adiabatic exchange-correlation density functional which correctly captures all

features of Rabi dynamics in the Hubbard dimer. This functional is considered one of

the main results of chapter 5.

Another potential application of the TD(C)DFT functionals, proposed in this thesis, is

a reconstruction/inverse engineering analytic control pulses for single-particle quantum

dynamics. Analytically solvable quantum problems have been always of interest in the

theoretical physics since they deepen our intuition of the quantum mechanical systems.

However unlike the static quantum problems where there is a handful of solvable exam-

ples [69], there is just a very few analytically solvable examples with a time-dependent

potential. To name a few: solutions of the Landau-Zener [70, 71] and Rabi [72] prob-

lems, or the solution for a driven harmonic oscillator [73, 74] which is closely related to

a so-called harmonic potential theorem.[75–77]

In the recent years and with the impressive progress in the fields of quantum computing

and quantum control the interest in analytically solvable quantum dynamical problems

is renewed. In order to further develop quantum gates it is necessary to accurately

control [78–80] and prepare the state of a qubit [81–83]. It has been recognized that

analytic pulses in quantum control lead to a more robust evolution against errors and

noise in pulse parameters [78, 84, 84–87] which can explain the great interest in finding

new pulses to analytically control two-level systems. [88–96]
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In the last decade a new trend has emerged where they inverse engineer time-dependent

Hamiltonian to result prescribed dynamics for a set of parameters. Most of the examples

of these studies are based on two level systems [94, 97–100] and a few for the three level

systems. [101]

In chapter 6 we propose an alternative strategy of reconstructing time-dependent driving

potentials for analytically solvable quantum problems. Our proposal employs the explicit

(current) density-(vector) potential map of TD(C)DFT for single particle systems.[102–

106] These maps imply that the knowledge of some properly chosen one particle ob-

servables, such as the density or the current, is sufficient to explicitly reconstruct the

corresponding driving fields, and therefore, the full wave function of the system. The

same strategy would be applicable to a general many-particle quantum system, if a

proper reconstruction of the density-potential map is possible. For example, recently

using the global fixed point formalism, mentioned above, the external potential for a

prescribed density evolution in a model system was numerically constructed. [107, 108]

In chapter 6 we address, within a common scheme, control problems for the real space

dynamics and for dynamics of discrete systems with a finite dimensional Hilbert space,

such as a motion of quantum particle on tight-binding lattices, or the dynamics of a spin

in the presence of a time-dependent magnetic field. To illustrate our strategy of inverse

engineering we will recover the known exact solution for a driven harmonic oscillator

[73, 74], and present nontrivial examples of analytic control for a particle on a finite 1D

chain and for a spin-1/2 (qubit) system.

Finally we conclude this work with a short discussion on the results and outlook of the

further research.



Chapter 2

Theoretical Background

In this chapter we present some theoretical basics underlying our work. As mentioned

in the introduction, the focus of this work is on the mapping theorems for the non-

stationary quantum problems. However we think, mainly for two reasons, it makes sense

to start with the original mapping theorems for the static problem. First, it reviews the

very first steps of a revolution in the computational physics and chemistry which made

possible studies of realistic many-electron systems. Second and more important for our

work, it emphasizes on the fact that the DFT formalism relies on the minimum principle.

This is in contrast to the dynamics where there is no minimum principle to rely and

thus the mapping theorems need to be based on the equations of motion.

Then in the section for TDDFT we present a detailed review of the Runge-Gross theorem

which proves the uniqueness of the density-potential map. The proof is for Taylor

expandable densities and moreover, the v-representability of the density is taken for

granted. Later in chapter 3 we see that both of these assumptions can be relaxed on

lattices.

Afterwards, we present an alternative formulation of the density-potential mapping prob-

lem. This formulation as a mathematically well posed problem, in principle, can lead us

to the solution for both v-representability and uniqueness problems. Then a review of

the two approaches to this formulation is presented.

This covers most of the basics for chapters 3, 5 and 6. In the last section we present a

derivation for the electron-photon Hamiltonian in the context of non-relativistic QED.

9
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This provides us with a sufficient material for the chapter 4 where we prove the lattice

QED-TDDFT mapping.

2.1 Density functional theory

We start this section with the original Hohenberg-Kohn theorem and its proof. Then

we will move onto the Kohn-Sham formulation.

2.1.1 Hohenberg-Kohn Theorem

Let’s assume a system of N interacting fermions. The solution to the time-independent

Schrödinger equation determines the energy spectrum and eigenstates of the system

Ĥ|Ψ〉 = E|Ψ〉. (2.1)

The Hamiltonian Ĥ is the total energy operator of the system

Ĥ = T̂ + Ŵ + V̂ext, (2.2)

where T̂ is the kinetic energy operator, Ŵ the two-particle interaction operator

T̂ = −1

2

N∑
i=1

∇2
i , (2.3)

Ŵ =
1

2

∑
i 6=j

w(ri, rj). (2.4)

V̂ext, the time-independent external scalar potential, is a multiplicative operator which

includes the nuclei potential in the case of Born-Oppenheimer approximation

V̂ext =

N∑
i=1

v(ri). (2.5)

The density operator of an N -particle system is defined

n̂(r) =

N∑
i=1

δ(r− ri). (2.6)
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Considering the Hamiltonian (2.2) to have a non-degenerate ground state |Ψg〉, with the

eigenenergy Eg, the expectation value of the density operator at the ground state ng(r)

is given by

ng(r) = N

∫
dr2 · · ·

∫
drN |ψg(r, r2, ..., rN )|2, (2.7)

where the ground state wave function ψg(r1, r2, ..., rN ) = 〈r1, r2, ..., rN |Ψg〉 and r repre-

sent both the particle position and the spin, r = (x, σ).

As a result of Eqs. (2.1) and (2.7) we conclude that the ground state |Ψg〉 and the ground

state density ng are functionals of the external potential, but the question in DFT is if

these maps are unique and thus invertible? The Hohenberg-Kohn theorem is an attempt

to answer this question.

Theorem 2.1.1 (Hohenberg-Kohn Theorem). In a finite interacting system of N fermions

with a given interaction Ŵ the map from the external potential V̂ext to the ground state

density ng is unique, up to a constant shift in the potential.

Proof. We prove the theorem in a two step sequence and both using the proof by con-

tradiction. In the first step we prove that the map from the external potential to the

ground state wave function is unique, {Vext} ↔ {Ψg}. Then we prove the uniqueness

statement for the map from the ground state wave function to the ground state density,

{Ψg} ↔ {ng}.

To prove the first statement we show two external potentials, V̂ext and V̂ ′ext, which differ

by more than a constant, V̂ext 6= V̂ ′ext + C cannot lead to the same ground state |Ψg〉.

So, for the moment, let assume that two potentials V̂ext and V̂ ′ext have the same ground

states |Ψg〉 = |Ψ′g〉. Therefore writing two eigenvalue equations for Ĥ = T̂ + Ŵ + V̂ and

Ĥ ′ = T̂ + Ŵ + V̂ ′

Ĥ|Ψg〉 = Eg|Ψg〉, (2.8a)

Ĥ ′|Ψ′g〉 = E′g|Ψ′g〉, (2.8b)

and then subtracting them we get

(
V̂ext − V̂ ′ext

)
|Ψg〉 =

(
Eg − E′g

)
|Ψg〉. (2.9)
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Since the external potential is a multiplicative operator we can divide both sides by |Ψg〉

provided that the ground state is non-zero for a set of positive measure.[109] This results

V̂ext − V̂ ′ext = Eg − E′g, (2.10)

which is in contradiction with the assumption on V̂ext and V̂ ′ext.

Like the first step, we prove the second one by contradiction. We prove that if two

different ground states, |Ψg〉 6= eiβ|Ψ′g〉, have the same density ng we encounter a con-

tradiction.

First let show that the expectation value of the Hamiltonian Ĥ with respect to |Ψ′g〉 is

always bigger than the ground state energy of Ĥ. For the expectation value of Ĥ we

have

〈Ψ′g|Ĥ|Ψ′g〉 =
∑
n=0

|an|2En, (2.11)

where we expanded |Ψ′g〉 over the eigenbasis of Ĥ, |Ψ′g〉 =
∑

n=0 an|Ψn〉, with n = 0

representing the ground state. On the other hand for the summation on the right hand

side of the equation we have:

∑
n=0

|an|2En > Eg
∑
n=0

|an|2 = Eg. (2.12)

Thus we find:

Eg < 〈Ψ′g|Ĥ|Ψ′g〉. (2.13)

As we see later this inequality, known as the minimum energy principle, is the essential

statement in the Hohenberg-Kohn this theorem and in general DFT.

For the expectation value on the right hand side of the equation we can write

〈Ψ′g|Ĥ|Ψ′g〉 = 〈Ψ′g|Ĥ − V ′ext + Vext|Ψ′g〉 = E′g +

∫
dr
(
v′(r)− v(r)

)
ng(r), (2.14)

where we used he definition of the external potential Eq. (2.31). Then we substitute the

expectation value back into the inequality (2.13)

Eg < E′g +

∫
dr
(
v′ext(r)− vext(r)

)
ng(r). (2.15)
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We can also write the corresponding inequality for E′g

E′g < Eg +

∫
dr
(
vext(r)− v′ext(r)

)
ng(r). (2.16)

Finally adding the two inequalities (2.15) and (2.16) we get

Eg + E′g < Eg + E′g, (2.17)

which is an obvious contradiction. Therefore the map from the ground state wave

function to the ground state density is unique and thus bijective, {Ψg} ↔ {ng}.

Consequently the map from the external potential to the ground state density is unique,

{Vext} ↔ {ng}.

The main argument in the Hohenberg-Kohn proof, the minimum principle (2.13), un-

derlies the density-potential map in DFT. As a direct consequence of this map, the

expectation value of any observable Ô in the ground state is uniquely determined by the

ground state density ng. Mathematically speaking, the ground state expectation value

of Ô is a unique functional of ng

O[ng] = 〈Ψg[ng]|Ô|Ψg[ng]〉. (2.18)

One of these observables is the total ground state energy of the system, the expectation

value of the total Hamiltonian (2.2) with respect to |Ψg〉

Evext [ng] := 〈Ψg[ng]|T̂ + Ŵ + V̂ext|Ψg[ng]〉 = FHK +

∫
drv(r)ng(r), (2.19)

where FHK is the Hohenberg-Kohn energy functional which is sum of the kinetic and

interaction energies.

As a consequence of the minimum energy principle (2.13), the energy in the right hand

side is minimum if only the density is the ground state density of the Hamiltonian

with the specified V̂ext and therefore the ground state density can be found through a

variational search: [66, 110, 111]

Eg = min
n∈N

Ev[n]. (2.20)
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where N is the set of the v-representable ground state densities. One can also rewrite

the variational principle in a differential form

δ

δn(r)
Ev[n]

∣∣∣∣
n=ng

= 0. (2.21)

However one needs to show first, there is a proper norm convergence in N in the vicinity

of the ground state density ng and, second, the energy functional is differentiable.

2.1.2 Kohn-Sham system in DFT

Lets assume an auxiliary system of N non-interacting fermions described by the Hamil-

tonian

Ĥs = T̂ + V̂s. (2.22)

According to the Hohenberg-Kohn , the ground state energy of a non-interacting system

is a unique functional of its ground state density ns. Therefore from (2.19) we have:

Evs [ns] = Ts[ns] +

∫
drvs(r)ns(r), (2.23)

where Ts[n] is the universal kinetic energy functional.

This non-interacting system is Kohn-Sham if it reproduces the same ground state density

of the interacting system under the study

ns(r) = ng(r). (2.24)

Obviously this is possible if the ground state density of the interacting system is also

non-interacting v-representable .

From the Hohenberg-Kohn theorem, again, we know that the ground state wave function

is uniquely determined by the external potential for a specified interaction. In this case

since the particles are non-interacting the non-degenerate ground state can be written
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in terms of a single Slater determinant

ψs(r1, r2, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN (r1)

ϕ1(r2) ϕ2(r2) · · · ϕN (r2)
...

...
. . .

...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.25)

where ϕj(r) is the jth eigenfunction of the single-particle Schrödinger equation with the

eigenenergy εj (
−∇

2

2
+ vs(r)

)
ϕj(r) = εjϕj(r). (2.26)

The single particle eigenfunctions, ϕj(r), are called the Kohn-Sham orbitals.

Therefore the Kohn-Sham density is a direct sum of the individual orbital densities

ns(r) =
N∑
j=1

|ϕj(r)|2. (2.27)

We can rewrite the Kohn-Sham potential by addition and subtraction of the interacting

external and Hartree potential

vs[ns](r) = vext(r) +

∫
drw(r, r′)ns(r) + vxc[ns](r) (2.28)

where vxc, the exchange-correlation potential, is a functional of the density and in prin-

ciple, it includes all many-body effects like correlations and exchange.

Provided the exact exchange-correlation functional is known, the self-consistent solution

of the Kohn-Sham equation (2.26) together with Eqs. (2.27) and (2.28) determines the

exact ground state density of the Kohn-Sham system and consequently the ground state

density of the interacting system. Unsurprisingly, the functional is not known and

approximations are needed to be performed. However the DFT theory does not suggest

any systematic way to construct approximations which can be strategically improved.

In chapter 5 we find the exact Hohenberg-Kohn functional for a two site Hubbard model

by using the constrain search.
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2.2 Time-dependent density functional theory

In this section we summarize some of the basic theorems in TDDFT. This theory, in some

sense, is a generalization of the static DFT to time-dependent many-particle quantum

problems. However, the similarity does not go beyond the very basic idea of density-

potential mapping. For example it is not possible to simply extend the DFT’s basic

theorems to the time-dependent problems.

The system under the study, here, is a group of N interacting identical Fermions, for ex-

ample electrons, which evolves from a some given initial state |Ψ0〉. The time-dependent

state |Ψ(t)〉 is the solution to the time-dependent many-body Schrödinger equation

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. (2.29)

The system is characterized by a non-relativistic time-dependent Hamiltonian

Ĥ(t) = T̂ + Ŵ + V̂ext(t), (2.30)

where the kinetic energy T̂ and the two-particle interaction are given by Eqs. (2.3) and

(2.4) and the external potential V̂ext is a classical time-dependent scalar potential

V̂ext(t) =
N∑
i=1

v(ri, t). (2.31)

The time-dependent density n(r, t) is the expectation value of the density operator with

respect to |Ψ(t)〉

n(r, t) = N

∫
dr2 · · ·

∫
drN |ψ(r, r2 · · · rN ; t)|2 (2.32)

where, as before, the wave function is the projection of the state vector over the position

coordinate ψ(r1, r2, ..., rN ; t) = 〈r1, r2, ..., rN |Ψ(t)〉.

Using the Schrödinger equation (2.29) one can show that expectation value of observables

obeys the Heisenberg equation of motion

d

dt
〈Ô〉 = i〈Ψ(t)|[Ĥ(t), Ô]|Ψ(t)〉+ 〈 ∂

∂t
Ô〉. (2.33)
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So for the time evolution of the density this gives

d

dt
n(r, t) = i〈Ψ(t)|[Ĥ(t), n̂(r)]|Ψ(t)〉. (2.34)

The commutator between n̂ and Ŵext and between n̂ and V̂ext are zero. and [T̂ , n(r)]

can also be computed with few lines of algebra. The result is the well-known continuity

equation which connects the first derivative of the density ṅ to the current density 1

ṅ(r, t) = −∇ · j(r, t), (2.35)

where the current density operator is defined ĵ(r)

ĵ(r) = − i
2

N∑
j=1

[∇jδ(r− rj) + δ(r− rj)∇j ]. (2.36)

The continuity equation expresses the conservation of particles, that is the number of

particles in a given volume changes only if there is a current flow through its boundary.

2.2.1 The Runge-Gross theorem

The ”direct” map from the time-dependent external potential V̂ext to the time-dependent

state |Ψ(t)〉 is defined through the Schrödinger equation (2.29). And the map from the

wave function |Ψ(t)〉 to the density is given through the expectation value (2.32). This

establishes the direct potential-density map {Vext} → {n}.

TDDFT, in the contrast, deals with the ”inverse” map, {n} → {Vext}. The questions in

TDDFT can be categorized in 3 main categories. First, v-representability problem, does

the inverse map exist? Second, uniqueness problem, is the inverse map unique? Third,

functional problem, what is the explicit inverse map?

The Runge-Gross theorem, in 1984, [6] answers the second question for a particular case

of t-analytic densities. It states that the one-particle density n(r, t) of a many interacting

electron system, for a given initial state, is indeed uniquely determined by the driving

potential, provided the density is v-representable .

1A derivation on the continuity equation in a lattice is given in the appendix A.1
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Theorem 2.2.1 (Runge-Gross ). For every single particle potential v(r) which can be

expanded into a Taylor series with respect to the time around t = t0 a map G : v(r, t)→

n(r, t) is defined by solving the time-dependent Schrödinger equation with a fixed initial

state |Ψ0〉 and calculating the corresponding densities n(r, t). This map can be inverted

up to an additive merely time-dependent function.

Proof. Let us assume two identical quantum systems evolving from the same initial state

|Ψ0〉 and thus having the same initial density n(r, t0). We prove that at t > 0 these two

systems have different time-dependent densities n(r, t) 6= n′(r, t) if they are driven by

two Taylor expandable external potentials, v(r, t) and v′(r, t), which differ by more than

a time-dependent constant, see Fig. 2.1

v(r, t)− v′(r, t) 6= c(t). (2.37)

'

Figure 2.1: Schematic graph of the TDDFT mapping stated in the Runge-Gross The-
orem 2.2.1.

Therefore there is a smallest integer k such that the k-th time derivative differs by more

than a constant
∂k

∂tk
[v(r, t)− v′(r, t)]|t=0 6= C. (2.38)

Next, we show that consequently the (k + 2)-th time derivative of the densities, n(r, t)

and n′(r, t), are different.

The first step is to prove that these two different external potentials, v and v′, lead to

different time-dependent currents. So, using the Heisenberg equation (2.33), we write
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the equations of motion for the currents driven by the potentials

∂

∂t
j(r, t) = −i〈Ψ(t)|[̂j(r), Ĥ(t)]|Ψ(t)〉, (2.39)

∂

∂t
j′(r, t) = −i〈Ψ′(t)|[̂j(r), Ĥ ′(t)]|Ψ′(t)〉, (2.40)

where Ĥ and Ĥ ′ are the Hamiltonians (2.30) with v and v′ respectively.

Then we calculate the difference of the current derivatives at the initial time, t = 0:

∂

∂t

(
j(r, t)− j′(r, t)

)
|t=0 = −i〈Ψ0|[̂j(r), Ĥ(0)− Ĥ ′(0)]|Ψ0〉. (2.41)

The kinetic T̂ and interaction Ŵ cancels between the Hamiltonians and the only remain-

ing term is the difference between the external potentials which can be easily calculated

∂

∂t

(
j(r, t)− j′(r, t)

)
|t=0 = −n(r, 0)∇

(
vext(r, 0)− v′ext(r, 0)

)
. (2.42)

Assuming the density n(r, 0) is non-zero 2, the condition Eq. (2.38) is fulfilled for k = 0.

Otherwise we need to go beyond the first derivative and calculate the difference between

higher derivatives of the currents until we encounter a non-zero difference. So calculating

(k + 1)-th derivative of the current difference we have

(
∂

∂t

)k+1 (
j(r, t)− j′(r, t)

)
|t=0 = −n(r, 0)∇uk(r, 0), (2.43)

where we define a new function uk

uk(r, 0) =
∂k

∂tk
(
v(r, t)− v′(r, t)

)
|t=0. (2.44)

By assumption (2.38) there is such k that uk(r, 0) is non-constant. We also assumed the

density is nodeless n(r, t) 6= 0. Therefore the (k+ 1)-th derivatives are different and this

proves the currents, j and j′, are different infinitesimally after t = 0.

By now, we showed that different potentials lead to different currents. However, we need

to prove that the difference in the currents always translates to the densities.

2This is an extra assumption which is not required by the original Runge-Gross proof. Nonetheless
this is a common assumption in density functional type theories
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By taking divergence of the equation (2.43) and using the continuity equation (2.35)

we get the time derivative of the density difference

(
∂

∂t

)k+2 (
n(r, t)− n′(r, t)

)
|t=0 = ∇ · [n(r, 0)∇uk(r, t)] . (2.45)

The right hand side of this equation is zero only if the term in the square brackets are

purely rotational. To show that this cannot be the case let us calculate the following

integral

∫
d3ruk(r, 0)∇ · [n(r, 0)∇uk(r, 0)] = −

∫
d3rn(r, 0) [∇uk(r, 0)]2

+

∮
dS · [uk(r, 0)n(r, 0)∇uk(r, 0)] . (2.46)

By sending the surface of the integral to infinity the second integral in the right hand

side goes to zero presuming that the density falls fast enough. By assumption, there is

some r that the integrand of the first integral is non-zero and always non-negative.

Thus the whole integral is positive. This means there must be some r where ∇ ·

[n(r, 0)∇uk(r, 0)] 6= 0 . This proves that n and n′ are different just infinitesimally

after the initial time t = 0.

Assumption of the Runge-Gross theorem

In the Runge-Gross theorem the density-potential mapping was proven under some es-

sential assumptions. However it seems that the result of this theorem is valid well beyond

some of the assumptions. Below we list the assumptions of the Runge-Gross theorem

and proof, some more obvious and some more subtle:

• The time-dependent density n(r, t) is v-representable at t > 0.

• The potential v(r, t) is Taylor expandable around the initial time t = 0.

• The time-dependent density n(r, t) is analytic in t.

• The density is nodeless n(r, t) 6= 0.

• The system is finite, i.e. there is some finite r0 such that n(r, t) = 0 for r ≥ r0.
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2.3 Alternative formulation of the problem, Non-linear

Schrödinger equation formalism

The Runge-Gross theorem answers the uniqueness question using the Taylor expansion;

however, it does not suggest any systematic way to invert the map or, in other words,

to find the potential from the density. Here we formulate the density-potential mapping

in terms of a set of closed equations where its solution determines the universal density

potential map.

The Schrödinger equation (2.29) defines the direct map from the external potential to the

wave function and the density. The strategy is to find an additional equation which links

the density to the external potential and/or the wave function. Therefore the resulting

equation together with the Schrödinger equation can form a closed set of equations for

the external potential and the wave function in terms of given density and initial state.

Although the continuity equation (2.34) determines the first derivative of the density

for a given wave function, it does not uniquely fix the current for a given density, as

a result of the divergence in the right hand side , so we cannot solve it for the wave

function in terms of the density.

Differentiating the continuity equation (2.35) with respect to t results in an equation

which plays a key role in TDDFT

n̈(r, t) = ∇ · (n(r, t)∇v(r, t)) + i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉. (2.47)

This equation is the divergence of the so called force balance equation, however, from

now on we follow the standard practice and simply call it the force balance equation. The

force balance equation is a hydrodynamical equation which states that the acceleration

for a volume element of a liquid is equal to the sum of the external forces and the internal

forces and the stress force, in the liquid. The first term in the right hand side of the force

balance equation (2.47) is the divergence of the external force, the Sturm-Liouville term,

and the second term is the divergence of the stress force. The force balance equation

plays a central role in the TDDFT mappings. It connects the density n to the external

potential v and the wave function |Ψ(t)〉. By rearranging the force balance equation we
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get an equation which relates the external potential vext to the density and the wave

function |Ψ(t)〉.

The force balance equation together with the Schrödinger equation (2.29) form a closed

set of closed equations for potential v, wave function |Ψ(t)〉 provided the density n and

the initial state |Ψ0〉 are known

i∂t|Ψ(t)〉 = Ĥ[vext]|Ψ(t)〉, (2.48)

∇ · (n(r, t)∇vext(r, t)) = n̈(r, t)− i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉. (2.49)

Consequently the v-representability and uniqueness problems are reduced to the exis-

tence of a unique solution to this system of equations for a given pair of initial state

|Ψ0〉 and time-dependent density n.

Importantly the density n and initial state |Ψ0〉 are not independent of each other and

fixing |Ψ0〉 uniquely determines n and ṅ

〈ψ0|n̂(r)|ψ0〉 = n(r; t0), (2.50)

−∇〈ψ0 |̂j(r)|ψ0〉 = ṅ(r; t0). (2.51)

This puts a condition on the initial state |Ψ0〉 and the density n which, means that

densities which are not consistent with the initial state |Ψ0〉 are non-v-representable .

There are two ways suggested in the literature to tackle v-representability and uniqueness

problem using the system of equations (2.48). First one is known as the fixed point

approach. [17] In this approach one assumes a time-dependent density n(r, t) consistent

with an initial state |Ψ0〉. Then in an iterative procedure, starts with a guess potential

v0 and solves the Schrödinger equation with the initial state |Ψ0〉 to find |ψ0(t)〉. Then

by solving the force balance with n(r, t) and |ψ0(t)〉 he/she gets a potential v1 which

will substitute it back into the Schrödinger equation . It is proven in Ref. [17] that this

iteration converges to a unique potential v provided that the response function of the

divergence of the internal forces is bounded.
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In the second approach one solves the force balance (2.49) equation to find the external

potential vext in term of the density n and the wave function |Ψ(t)〉

vext[n,Ψ] = (∇ · n(r, t)∇)−1
[
n̈(r, t)− i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉

]
. (2.52)

Substituting it back into the Schrödinger equation results a non-linear Schrödinger equa-

tion (NLSE) with a cubic non-linearity in the wave function |Ψ(t)〉. [9, 104] In this case

the v-representability and uniqueness problems are reduced into existence of a unique

solution to NLSE for a given initial state |Ψ0〉 and density n.

In both approaches one needs to invert the Sturm-Liouville operator, Eq. (2.52), which

is in general a non-trivial problem. Fortunately it has been shown recently that for a

bounded domain with a periodic or zero boundary condition the Sturm-Liouville op-

erator is guaranteed to be invertible. [112, 113] So the only thing that remains is to

study the Lipschitz continuity of vext[n,Ψ] (2.52) and then using the well established

theorems for quasilinear PDE’s [114, 115] we will be able to fully answer both the v-

representability and uniqueness questions in TDDFT.

However, for the moment, there is an alternative way to approach the problem. By

approximating the infinite-dimensional Hilbert space with a finite-dimensional one, e.g.

tight-binding approximation, the Sturm-Liouville operator reduces to a matrix with

finite dimensions which can be easily ”inverted”. 3 In addition NLSE reduces to a

system of ordinary differential equations (ODE) which is much easier to handle. By

using this approach in chapter 3 we prove the basic theorems for the lattice TDDFT.

Then in chapter 4 we will extend those theorems into electronic systems interacting with

quantized electric field.

2.4 Electronic system interacting with quantized electro-

magnetic field

By now we introduced the density-potential mapping for the system of interacting par-

ticles in a classical electric field. In this construction the electric field is treated as an

external variable where its value is determined by a time-dependent scalar function vext.

3The invertibility of the discretized Sturm-Liouville operator is discussed in chapter 3.
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However, despite its generality, this construction is an approximation to a more accurate

setup in which we consider the quantum mechanical nature of electromagnetic field. For

example the quantum electrodynamical (QED) description of the light becomes essential

when we are studying a Fermionic system in an optical cavity. [29–31, 37–39]

In this section we present a brief introduction to the non-relativistic photonic Hamil-

tonian. We start with the wave equation in the classical electromagnetism and then

by defining canonical variables we quantize the energy of the field. Afterwards using

the radiation Hamiltonian we write the full Hamiltonian for a Fermionic system in an

optical cavity. The discrete version of the electron-photon Hamiltonian introduced here

is later used in chapter 4 where we prove the basic QED-TDDFT theorems on a lattice.

2.4.1 Canonical quantization

The time evolution of the classical electromagnetic field in vacuum is given by the

Maxwell equations for free field

∇×E + ∂tB = 0, (2.53a)

∇×B− ∂tE = 0, (2.53b)

∇ ·E = 0, (2.53c)

∇ ·B = 0. (2.53d)

The electric E and magnetic field B can be expressed in terms of the scalar v and vector

A potential

B = ∇×A (2.54a)

E = −∂tA +∇v, (2.54b)

where E and B are invariant under the following gauge transformation

A→ A′ +∇χ, (2.55a)

v → v′ − ∂tχ. (2.55b)
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Therefore it is possible to choose a gauge where the scalar potential is zero everywhere

v = 0, the temporal gauge.

Using the Maxwell equations (2.53) one can show that the vector potential obeys the

wave equation

∇2A− ∂2
t A = 0. (2.56)

Considering the periodic boundary condition we can easily write the vector potential in

terms of plane waves

A(r, t) =

√
2π

L3

∑
k,λ

εkλ
k

[
eiβeik·rakλ(t) + e−iβe−ik·ra∗kλ(t)

]
, (2.57)

where L3 is the volume of the cavity, εkλ is the polarization vector for the mode with

wave vector k and polarization λ, and β is an arbitrary constant phase. The time-

dependent coefficient akλ(t) for each mode is given by

akλ(t) = eiωktakλ, (2.58)

where the constant akλ is fixed through the initial value and boundary conditions. The

vector potential A of (2.57) fulfills the wave equation (2.56) if ωk = k and k · εkλ = 0.

Substituting A(r, t) of (2.57) back into the equations for the electric E and magnetic

field B (2.59) we get

E(r, t) =

√
2π

L3

∑
k,λ

εkλ
k

[
ei(β+π/2)eik·rakλ(t) + c.c.

]
, (2.59a)

B(r, t) =

√
2π

L3

∑
k,λ

εkλ × k

k

[
ei(β+π/2)eik·rakλ(t) + c.c.

]
. (2.59b)

Now we can write the Hamiltonian of the classical radiation field. The energy of the

radiation field is given by

U =
1

8π

∫ (
E2 +B2

)
dr. (2.60)
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Therefore substituting the expressions of the Electric and magnetic fields (2.59) we get

U =
∑
k,λ

ωka
∗
kλakλ =

1

2

∑
k,λ

ωk (a∗kλakλ + akλa
∗
kλ) . (2.61)

Of course the constants a∗kλ and akλ in the right hand side commute here but to quantize

the field we need to write everything in a symmetric manner. It also makes sense to

write the energy U in terms of canonical variables before quantization

qkλ = (
1

2ωk
)
1
2 (akλ + a∗kλ) , (2.62)

pkλ = −i(ωk

2
)
1
2 (akλ − a∗kλ) . (2.63)

The field energy in terms of the new canonical coordinates become

U =
1

2

∑
k,λ

(
p2
kλ + ω2

kq
2
kλ

)
. (2.64)

pkλ and qkλ are called canonical variables since they follow

q̇kλ =
∂U

∂pkλ
, ṗkλ = − ∂U

∂qkλ
. (2.65)

To quantize the field we substitute the canonical variables with non-commutative oper-

ators

[q̂kλ, p̂k′λ′ ] = iδkk′δλλ′ (2.66)

Consequently the field energy U is promoted to the Hamiltonian for the field

Ĥf =
1

2

∑
k,λ

(
p̂2
kλ + ω2

kq̂
2
kλ

)
. (2.67)

The Hamiltonian for the free field is nothing but the Hamiltonian of an ensemble of

harmonic oscillators with frequencies ωk, where each ωk is twofold degenerate with

respect to the polarization λ.
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Converting akλ and a∗kλ to non-commuting operators in the field energy U (2.49) results

the field Hamiltonian in the second quantization

Ĥf =
1

2

∑
k,λ

ωk

(
b̂†kλb̂kλ + b̂kλb̂

†
kλ

)
=
∑
k,λ

ωk

(
b̂†kλb̂kλ +

1

2

)
(2.68)

where b̂†kλ ( b̂kλ) creates (annihilates) a photon with the wave vector k and with the

polarization λ. The photon creation and annihilation operators fulfill the following

commutation relation

[b̂kλ, b̂
†
k′λ′ ] = δkk′δλλ′ . (2.69)

Having the field energy quantized in the next section we will write the Hamiltonian for

the electromagnetic field interacting with matter.

2.5 N electrons coupled to the quantized light

Let us turn to a problem where a system of N electrons interacts with quantized light.

There is an external time-dependent current Jext(t) which acts as the external pertur-

bation for the field. The following expression describes the Hamiltonian of this system

in the temporal gauge (2.54)

Ĥ =
1

2m

N∑
j=1

[
i∇j + Â(r)

]2
+ Ŵ + Ĥf − Jext(t) · Â(r). (2.70)

Where the vector potential operator Â(r) is found by replacing the complex functions

akλ and a∗kλ in Eq. (2.57) by the annihilation b̂kλ and creation operator b̂†kλ respectively.

Therefore Â(r) in the Schr̈odinger representation reads as:

Â(r) =

√
2π

L3

∑
k,λ

εkλ
k

[
eik·rb̂†kλ + e−ik·rb̂†kλ

]
. (2.71)
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In the long wave length limit we can adopt the dipole approximation where exp ik.r ≈ 1

and so we have for the vector potential

Â =

√
2π

L3

∑
k,λ

εkλ
k

[
b̂†kλ + b̂†kλ

]
, (2.72)

Using definition for the canonical coordinate q̂ (2.62) we can rewrite the vector potential

as

Â =

√
4π

L3

∑
k,λ

q̂kλεkλ. (2.73)

Substituting back Â into Eq. (2.70) we get the full Hamiltonian for the system in the

temporal gauge

Ĥ =
1

2m

N∑
j=1

[
i∇j +

∑
α

q̂αλα

]2

+
1

2

∑
i 6=j

w(ri, rj)

+
∑
α

(
1

2
p̂2
α +

1

2
ω2
αq̂

2
α − Jext · λαq̂α

)
. (2.74)

where the α summation is over {(k, λ)} and the vector λ is a renormalized polarization

vector λ =
√

4π
L3ε.

As a result of the dipole approximation the Hamiltonian Ĥ in the length gauge is fully

independent of the vector potential. Therefore doing a simple gauge transformation

(2.55) the Hamiltonian transforms to:

Ĥ =
N∑
j=1

(
∇2
j

2m
+
∑
α

λα · rj p̂α

)
+

1

2

∑
i 6=j

w(ri, rj)

+
∑
α

(
1

2
p̂2
α +

1

2
ω2
αq̂

2
α + λα · dext(t)p̂α

)
, (2.75)

where dext(t) is the dipole moment of the charge accumulated from the external current.∑
λp̂ in the first and the last term is the operator form of the electric field Ê.

Later in chapter 4 we use the discretized version of Eq. (2.75) in the context of density-

potential mapping for systems interacting with quant light.



Chapter 3

Time-dependent density

functional theory on a lattice

3.1 Introduction

In the previous chapter we showed that the v-representability and uniqueness problems

in TDDFT are equivalent to the existence of a unique solution to the universal NLSE

which determines the potential and the many-body wave function in terms of a given

basic observable like density. Mathematically this universal problem can be formulated

in two distinct ways. One possibility is to formulate it as a fixed point problem. [17, 18]

However here we pose it alternatively as a Cauchy problem for the NLSE. [9, 13–16] We

apply the NLSE technique of Ref. [16] for the lattice TDCDFT to address the TDDFT

mapping problem on a lattice.

First we present a proof of uniqueness and existence theorems for the lattice TDDFT

and analyze conditions which have to be imposed on the initial state and the density

to guarantee v-representability . Afterwards a special case will be discussed where we

show any properly normalized density is locally v-representable provided the dynamics

starts from the ground state. Then we clarify the problem further by an example of a

single particle on a two-site lattice.

This chapter is a part of the article ”Time-dependent density functional theory on a lattice”, Physical
Review B 86, 125130 (2012), by Mehdi Farzanehpour, I. V. Tokatly.

29
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This chapter is structured as the following. In section 3.2 we present a general formu-

lation of the lattice many-body theory and derive a lattice analog of the force balance

equation that plays a key role in the NLSE formalism for TDDFT. section 3.3 is the

central part of this chapter. Subsection 3.3.1 starts with a brief overview of our approach

to TDDFT in a more familiar continuum case. Then we derive the corresponding NLSE

for a lattice theory, and finally, formulate and prove the general existence of a unique-

ness theorem on the lattice TDDFT. Several important aspects of the basic theorem

for a generic initial state are discussed in subsection 3.3.2. Section 3.4 presents an ex-

plicit illustration of the general existence theorem for a simple exactly solvable model

– one particle on a two-site lattice. In section 3.5 we consider a practically important

case of a system evolving from its ground state. The main outcome of this section is a

v-representability theorem for the initial ground state.

3.2 Preliminaries: Many-body problem on a lattice

Let us consider dynamics of a system of N interacting quantum particles on a lattice that

consists of a finite but arbitrary large number M of sites. The many-body wave function

ψ(r, r2, ..., rN ; t) characterizes the state of the system at time t , where coordinates ri of

particles (i = 1, 2, .., N) take values on the lattice sites. And the following Schrödinger

equation describes dynamics driven by an external on-site potential v(r; t):

i∂tψ(r1, ..., rN ; t) = −
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; t)

+
N∑
j=1

v(rj ; t)ψ(r1, ..., rN ; t)

+
∑
j>i

wri,rjψ(r1, ..., rN ; t), (3.1)

where real coefficients Tr,r′ = Tr′,r correspond to the rate of hopping from site r to

site r′ (we assume Tr,r = 0), and wr,r′ is a potential of a pairwise particle-particle

interaction. Here we do not specify the geometry of the lattice and neither assume that

the interaction depends only on the distance between particles. For example, the latter
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is important in a typical transport setup where non-interacting or weakly interacting

leads connected to a strongly interacting central region . 1[25, 27, 28, 116, 117]

Equation (3.1) determines the wave function as a unique functional of continuous and

bounded external potential and a given initial state,

ψ(r1, r2, ..., rN ; t0) = ψ0(r1, r2, ..., rN ). (3.2)

As we discussed in the previous chapter the density n(r; t) of particles is the basic

variable in TDDFT. However in the present context it corresponds to the number of

particles on a given site and it is defined as:

n(r; t) = N
∑

r2,...,rN

|ψ(r, r2, ..., rN ; t)|2, (3.3)

where we assumed that the particles are identical. By taking the time derivative of the

density’s definition (3.3) and using the Schrödinger equation (3.1), we find the following

equation of motion for the density

ṅ(r; t) = i
∑
r′

[Tr,r′ρ(r, r′; t)− Tr′,rρ(r′, r; t)], (3.4)

where ‘ṅ = ∂tn, and ρ(r, r′; t) is a density matrix on the [r, r′]-link,

ρ(r, r′; t) = N
∑

r2,...,rN

ψ∗(r′, r2, ..., rN ; t)ψ(r, r2, ..., rN ; t). (3.5)

A derivation for the continuity equation on a lattice can be found in the appendix A.1

Equation (3.4) is the lattice version of the continuity equation (2.35). Since in the left

hand side of Eq. (3.4) we have the time derivative of the on-site number of particles,

the right hand side should be identified with the sum of outgoing currents flowing along

links attached to the site. Indeed introducing a link current from site r to site r′ as

follows

J(r, r′) = 2Im[Tr,r′ ρ(r, r′; t)], (3.6)

1Formally Eq. (3.1) corresponds to a system of MN linear ordinary differential equations (ODE). For
example, in the case of a single particle on a two-site lattice it is a system of two coupled equations.
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Figure 3.1: The lattice continuity equation (3.4) is the integral of the continuity
equation , in continuum, over a volume surrounding a lattice site. Using the divergence
theorem the integral of ∇ · J over a volume is equal to the sum of the current flowing

through its enclosing surface.

we can rewrite the continuity equation (3.4) in a more familiar way

ṅ(r; t) = −
∑
r′

J(r, r′). (3.7)

This equation shows that the rate which the density decreases on each site is equal to

the sum of all outgoing currents. Equation (3.7) can be also viewed as an integral of the

usual differential continuity equation (2.35) over a small volume element surrounding

the site r. See Fig. 3.1.

Now we need to introduce another equation of primary importance for the lattice

TDDFT. This is a lattice analogue of a divergence of the local force balance equa-

tion (2.47). Like before it can be derived by differentiating the continuity equation (3.4)

with respect to time, and using Eq. (3.1) to transform the derivative of the right hand

side. After straightforward calculations, the lattice force balance equation reduces to

the following form

n̈(r; t) = 2Re
∑
r′

Tr,r′ρ(r, r′; t)[v(r′; t)− v(r; t)] + q(r; t). (3.8)

Here q(r; t) stands for a ”lattice divergence” of the internal stress force,

q(r; t) = −2Re
∑
r′,r′′

Tr,r′
{
ρ2(r, r′′, r′; t)(wr,r′′ − wr′,r′′)

+ [Tr′,r′′ρ(r, r′′; t)− Tr,r′′ρ(r′, r′′; t)]
}
, (3.9)
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where ρ2(r, r′′, r′; t) in the right hand side is the two body density matrix,

ρ2(r, r′′, r′; t) = N (N − 1)
∑

r3,...,rN

ψ∗(r, r′′, ..., rN ; t)

× ψ(r′, r′′, ..., rN ; t). (3.10)

A detailed derivation of the force balance can be found in the appendix A.2.

A special role of the force balance equation (3.8) for TDDFT follows from the fact that it

explicitly relates the potential v(r; t) to the density n(r; t) and the instantaneous many-

body state ψ(t). As we already discussed in the previous chapter it has a defining role in

the TDDFT and together with the Schrödinger equation form a non-linear Schrödinger

equation . This equation (3.8) is the main result of the present section, which we will

use in the next section to analyze the existence of the lattice TDDFT.

3.3 TDDFT on a lattice

The whole concept of TDDFT is based on the existence of a 1:1 map between the time

dependent density and the external potential. In this section we will present the mapping

and the v-representability theorems for the lattice TDDFT which were published in Ref.

[106].

3.3.1 Statement of the problem and the basic existence theorem

Here we will use the NLSE approach to TDDFT-type theories [9, 13, 15, 16] introduced

in the chapter II.

In this framework the proof of the existence of TDDFT reduces to proving the uniqueness

and existence of solutions to a nonlinear many-body problem, e.g., NLSE in Eqs. (2.48) in

real space supplemented with an initial condition which satisfies the consistency relations

of Eqs. (2.50) and (2.51).

Strategically the solution of the outlined nonlinear problem contains two major steps: (i)

inverting the Sturm-Liouville operator in the left hand side of Eq. (2.49) to find the po-

tential as a functional of a given density and the instantaneous state, v[n(t), |ψ(t)〉](r);

and (ii) inserting this potential into Eq. (2.48) and solving the resulting NLSE. In a
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continuum proving the corresponding existence theorems for either step is a highly non-

trivial and currently unsolved problem, although a significant progress has been made

recently [17, 18, 118]. However the problems (i)-(ii) for the lattice many-body theory

due to the finite dimensionality of the Hilbert space is more manageable and therefore

a rigorous proof of existence and uniqueness can be given.

On a lattice the construction of the inverse map {n(t),Ψ0} 7→ {v(t),Ψ(t)} consists of

solving the discrete Schrödinger equation (3.1), where the potential v(r; t) is determined

self-consistently from the lattice force balance equation of Eq. (3.8) which we rewrite as

follows ∑
r′

kr,r′ [ψ(t)]v(r; t) = n̈(r; t)−q[ψ(t)](r). (3.11)

Here the functional q[ψ(t)](r) is defined by Eq. (3.9) and we introduced the following

notation

kr,r′(ψ) = 2Re

[
Tr,r′ρ(r, r′)− δr,r′

∑
r′′

Tr,r′′ρ(r, r′′)

]
. (3.12)

The initial condition for the nonlinear problem of Eq. (3.1) and (3.11) should satisfy the

consistency conditions which follow from the definition of the density Eq. (3.3) and the

continuity equation (3.2)

N
∑

r2,...,rN

|ψ0(r, r2, ..., rN )|2 = n(r; t0), (3.13)

−2Im
∑
r′

Tr,r′ρ0(r, r′) = ṅ(r; t0). (3.14)

Equations (3.1), (3.11), (3.13), and (3.14) are the lattice analogs of Eqs. (2.29), (2.47)

and (2.50). A dramatic simplification of the lattice theory comes from the fact that

both the Hilbert space H and the space V of lattice-valued potentials become finite

dimensional with dimensions MN and M , respectively. In particular, the lattice N -

body Schrödinger equation (3.1) corresponds to a system of MN ODE, while the force

balance equation (3.11) reduces to a system of M algebraic equations. In fact, Eq. (3.11)

can be conveniently rewritten in a matrix form

K̂(ψ)V = S(n̈, ψ), (3.15)
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where K̂ is a real symmetric M ×M matrix with elements kr,r′ of Eq. (3.12), and V

and S are M -dimensional vectors with components

vr = v(r) and sr(n̈, ψ) = n̈(r)− q[ψ](r), (3.16)

respectively. The K̂-matrix in Eq. (3.15) is a lattice analog of the Sturm-Liouville

operator m−1∇n∇ in Eq. (2.47). Hence on a lattice the step (i) in solving our nonlinear

many-body problem reduces to the simple matrix inversion which can be performed if

the matrix K̂ is nondegenerate. At this point it is worth noting that because of the

gauge invariance K̂ matrix of Eq. (3.12) it always has at least one zero eigenvalue that

corresponds to a space-constant eigenvector. Therefore if V is the M -dimensional space

of lattice potentials v(r), then the invertibility/nondegeneracy of K̂ should always refer

to the invertibility in theM−1-dimensional subspace of V orthogonal to a constant vector

vC(r) = C. Physically this means that the force balance equation (3.11) determines the

self-consistent potential v[n, ψ](r) only up to an arbitrary constant.

Now we are in a position to formulate and prove the basic existence and uniqueness

theorem on the lattice TDDFT. All statements of Theorem below refer to the lattice

N -body problem defined in section 3.2.

Theorem 3.3.1 ( existence of the lattice TDDFT). Assume that a given time-dependent

density n(r; t) is nonnegative on each lattice site, sums up to the number of particles

N , and has a continuous second time derivative n̈(r; t). Let Ω be a subset of the N -

particle Hilbert spaceH where the matrix K̂(ψ) of Eq. (3.12) has only one zero eigenvalue

corresponding to a space-constant vector. If the initial state ψ0 ∈ Ω, and the consistency

conditions of Eqs. (3.13) and (3.14) at time t0 are fulfilled, then

(i) There is a time interval around t0 where the nonlinear many-body problem of

Eqs. (3.1), (3.11) has a unique solution that defines the wave function ψ(t) and the

potential v(t) as unique functionals of the density n(t) and initial state ψ0;

(ii) The solution of item (i) is not global in time if and only if at some maximal existence

time t∗ > t0 the boundary of Ω is reached.

Proof. By the condition of theorem 3.3.1 ψ0 belongs to Ω where K̂(ψ) has only one

trivial zero eigenvalue. Hence there is a neighborhood of ψ0, such that for all ψ’s from

this neighborhood the matrix K̂(ψ) can be inverted (in the M −1-dimensional subspace
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of V, orthogonal to a constant). In other words, we can solve the force balance equation

(3.15) as V = K̂−1S and express (up to a constant) the on-site potential in terms of the

instantaneous wave function and the density

v[n, ψ](r) =
∑
r′

K̂−1
r,r′(ψ)sr(n̈, ψ). (3.17)

Substituting this potential into Eq. (3.1) we obtain the following NLSE,

i∂tψ(r1, ..., rN ; t) =
N∑
j=1

∑
r

K̂−1
rj ,rsrψ(r1, ..., rN ; t)

−
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; t)

+
∑
j>i

wri,rjψ(r1, ..., rN ; t). (3.18)

Equation (4.15) supplemented with the initial condition of Eq. (3.2) constitutes a uni-

versal nonlinear many-body problem which determines the wave function in terms of

the density. Formally it corresponds to a Cauchy problem for a system of NH = MN

ODE of the following structural form

ψ̇ = F (ψ, t), ψ(t0) = ψ0, (3.19)

where ψ is an NH-dimensional vector living in the Hilbert space H and the right hand

side is a nonlinear function of ψ’s components.

The nonlinearity of F (ψ, t) in Eq. (3.19) comes from the dependence of the potential

v[n, ψ](r) in Eq. (3.17) on the wave function, which, in turn, is determined by the

functions K̂−1(ψ) and S(n̈, ψ). Both kr,r′(ψ) of Eq. (3.12), and sr(n̈, ψ) of Eq. (3.16)

are linear in the density matrices, and thus bilinear in ψ, forms. Therefore the potential

v[n, ψ](r) and, as a consequence, the whole right hand side F (ψ, t) in Eq. (3.19) are

rational functions of components of the wave function. Moreover, the denominator of

these rational functions never turns into zero for all ψ ∈ Ω, which implies that in Ω the

function F (ψ, t) satisfies a uniform Lipshitz condition. An explicit time dependence of

F (ψ, t) is determined by the time dependence of n̈(t) that is continuous by the condition

of the theorem. Thus we conclude that for all ψ ∈ Ω the right hand side F (ψ, t) in Eq.

(3.19) is Lipshitz in ψ and continuous in time.
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After identifying the subset Ω with the domain of Lipshitz continuity we can directly

employ the standard results of the theory of nonlinear ODE. Namely, if the initial state

ψ0 ∈ Ω, the Picard-Lindelöf theorem [119] guarantees the existence of a finite interval

t0 − δ < t < t0 + δ, with δ > 0, where the initial value problem (3.19) has a unique

solution. This solution defines a unique map {n(t), ψ0} 7→ {v(t), ψ(t)} locally in time,

in accordance with the statement (i) of the theorem.

The extension theorems for nonlinear ODE imply that the local solution cannot be

extended beyond some maximal existence time t∗ > t0 only in two cases: first, at t→ t∗

the solution becomes unbounded or, second, at t→ t∗ it reaches the boundary of Ω. In

our case the solution is guarantied to be normalized and thus bounded. Therefore we

are left only with the second possibility, which proves the statement (ii) and completes

the proof of the theorem.

We note that in the special case of t-analytic density Picard-Lindelöf theorem reduces to

the classical Cauchy theorem for the first order ODE with an analytic nonlinearity. The

Cauchy theorem implies that for a given t-analytic density the NLSE procedure returns

the wave function and the potential which are also t-analytic. Similarly t-analyticity is

preserved in the direct map – a given t-analytic potential always produces a t-analytic

density. Therefore the generation of nonanalytic densities by analytic potentials, dis-

cussed in Refs.[8–10] for continuum systems, is not possible on a lattice, which is probably

related to the boundness of lattice Hamiltonians.

3.3.2 Discussion and comments on the existence theorem

3.3.2.1 Definition of the v-representability subset Ω

According to Theorem 3.3.1, any sufficiently smooth density n(r; t) is v-representable, at

least locally, if the dynamics starts inside the subset Ω of the Hilbert space. In general

to ensure that state ψ belongs to Ω we need to check the invertibility of matrix K̂(ψ).

Although this is possible in principle, but become difficult in practice, especially for

lattices with a large number of sites. Is it possible to formulate simpler, but possibly

more restrictive criteria, which would guarantee the validity of the lattice TDDFT.
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One simple necessary condition immediately follows from the form of the matrix elements

kr,r′ in Eq. (3.12). Matrix K̂(ψ) is nondegenerate only if a lattice state ψ is connected

in a sense that any two sites can be connected by a line composed of links with nonzero

values of Tr,r′Reρ(r, r′). Indeed, for a disconnected state K̂(ψ) takes a block-diagonal

form and new zero eigenvalues appear which correspond to piecewise constant in space

eigenvectors. The number of such zero eigenvalues equals to the number of disconnected

regions on a lattice. We emphasize that a purely geometric connectivity of the lattice

does not automatically guarantee v-representability – two sites connected geometrically

by a nonzero hopping matrix element Tr,r′ can be disconnected in the above sense if for

a state ψ the quantity Reρ(r, r′) vanishes. An explicit example of such a disconnected

(one-particle) state on a connected 4-site tight-binding cluster has been recently proposed

in Ref.[22] to demonstrate a possible non-v-representability in the lattice TDDFT. We

have considered an excited state with nodes on two opposite corners of a square formed

by four sites (see Fig. 1 in Ref. [22]). The two nodes effectively separate the system into

two disconnected parts. Therefore the matrix K̂ acquires an extra zero eigenvalue and

Theorem 3.3.1 does not apply if the dynamics starts from such a state. In fact, one can

show that this particular state belongs to the border of the v-representability subset Ω.

Obviously the connectivity of the lattice state is only a necessary but not a sufficient

condition for ψ to be in Ω. The reason is that for a connected state the quantities

Tr,r′Reρ(r, r′) for different links may have different signs which can be responsible for

extra zero eigenvalues of K̂. Hence the simplest sufficient condition is the connectivity of

the state and the positivity (or negativity) of Tr,r′Reρ(r, r′) for all lattice links. In other

words, a state ψ ∈ Ω if its K̂ matrix is primitive and does not have a block-diagonal

form. This condition is easy to check in practice, but it appears to be quite restrictive.

A less restrictive criterion that in many cases can still be checked easily, is a positive

(negative) definiteness of K̂(ψ). In section 3.5 we will show that this is exactly the case

for a many-body ground state on a connected lattice. Namely, if ψ0 is a ground state,

then K̂(ψ0) is negative definite and thus ψ0 ∈ Ω, which implies the existence of the

lattice TDDFT for a system evolving from its ground state.
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3.3.2.2 Boundness of ṅ(r; t) in the lattice TDDFT

A specific feature of quantum dynamics on a lattice, which narrows the class of v-

representable densities, is the boundness of the time derivative of the density [16, 21,

24, 103]. Since the hopping rate along a given link is fixed to be Tr,r′ , the link current

of Eq. (4.7) cannot exceed a certain maximal value, i. e. |J(r, r′)| ≤ |Jmax(r, r′)|, where

|Jmax| can be estimated [16, 20, 24] using the Cauchy-Schwarz inequality

|Jmax(r, r′)| = 2|Tr,r′ρ(r, r′)| ≤ 2|Tr,r′ |
√
n(r)n(r′). (3.20)

A physical density should satisfy the continuity equation (3.7) which imposes a bound

on its time derivative,

|ṅ(r)| ≤
∑
r′

|Jmax(r, r′)|. (3.21)

At the first glance Theorem 3.3.1 does not say anything about the boundness of ṅ(r; t).

Therefore it is instructive to see how the latter can be deduced from the conditions of the

theorem. First of all we note that if the solution of the universal NLSE exists, then the

continuity equation is necessarily satisfied, which can be true only if our given density

does not violate the bound of Eq. (3.21). According to the assumptions of the theorem

the density should satisfy the consistency conditions, Eqs. (3.13) and (3.14), and its

second time derivative n̈(r; t) should be continuous in time for all t > t0. By imposing

the condition of Eq. (3.14) we explicitly require the boundness of ṅ(r; t0) at the initial

time t0, while the continuity of n̈(r; t) ensures that the physical bound of Eq. (3.21)

cannot be violated immediately. It is also worth noting that the boundness of ṅ(r; t) is

closely related to the invertibility of K̂ matrix or, more precisely, to the connectivity of

the instantaneous state ψ(t). Indeed, the link current J(r, r′) of Eq. (4.7) and the off-

diagonal element kr,r′ of Eq. (3.12) are, respectively, the imaginary and the real parts of

the quantity 2Tr,r′ρ(r, r′; t). Therefore for any state ψ and r 6= r′ the following identity

holds true

|J(r, r′)|2 + |kr,r′ |2 = |Jmax(r, r′)|2. (3.22)

Equation (3.22) shows that when the current J(r, r′) reaches the maximal value of

Eq. (3.20), kr,r′ turns into zero, which breaks the link between sites r and r′. Hence

saturation of the bound in Eq. (3.21) implies breaking all links attached to a site r. This

site becomes disconnected from the rest of the lattice and the K̂ matrix acquires an
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extra zero eigenvalue, indicating that the state ψ is not anymore in the v-representability

subset Ω. Thus the saturation of the bound on ṅ(r) at some time t = t∗ automatically

assumes that at this time the solution hits the boundary of Ω. This behavior is in a

clear agreement with the statement (ii) of Theorem 3.3.1.

3.4 Explicit illustration: One particle on a two-site lattice

This section is aimed to illustrating the general NLSE scheme using a simple exactly

solvable example – one particle on two sites. In spite of its simplicity this example

practically contains all features of the most general N -body case, and thus displays all

subtle points of the general formulation in a clear and transparent form. Therefore it

is advisable to read this section to get a better feeling of the formalism presented in

section 3.3. Another explicit example of NLSE for an interacting two-particle system is

given in Appendix B.

Consider a particle living on a two-site lattice. The state of the system is described

by the one-particle wave function ψr(t), where the coordinate r takes values 1 or 2

corresponding to the two lattice sites.

The dynamics of the system is described by Eq. (3.1) where the number of the particles

N = 1 and there is no interaction term in the right hand side. Therefore Eq. (3.1)

reduces to the following system of two ODE

i∂tψ1 = v1ψ1 − Tψ2, (3.23a)

i∂tψ2 = v2ψ2 − Tψ1, (3.23b)

where ψi = (i; t), 7T is the hopping rate, and v1 and v2 are the time-dependent external

potentials on sites 1 and 2, respectively. The system of Eqs. (3.23) determines the

components of the wave functions ψ1 and ψ2 as functionals of the external potential and

the initial state ψ1,2(0) (for brevity we set t0 = 0).

To find the wave function as a functional of the density we have to construct the proper

NLSE, and for this we need an additional equation which relates the potential to the

density and wave function. In the general framework of section 3.3 the force balance

equation of Eq. (3.8) [or, equivalently, Eq. (3.15)] serves exactly for this purpose. For
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two sites K̂ is a 2× 2 matrix and therefore Eq. (3.15) takes the form

−k12 k12

k12 −k12

v1

v2

 =

n̈1−q1

n̈2−q2

 (3.24)

where krr′ and qr can easily be derived from the general definitions of Eqs. (3.12) and

(3.9), respectively,

k12 = 2T Reρ12, (3.25)

q1 = −q2 = 2T 2(|ψ2|2 − |ψ1|2). (3.26)

The link density matrix ρ12, which is in general determined by Eq. (4.6), in the present

one-particle case reduces to the product ρ12 = ψ∗1ψ2. The 2×2 matrix in the right hand

side of Eq. (3.24) is the K̂ matrix extensively discussed in the previous section. Obviously

K̂ always has a zero eigenvalue corresponding to a space-constant potential v1 = v2 = C.

If there is no other zero eigenvalue we can invert K̂ in the space perpendicular to the

constant vector vC(r) = C. Being perpendicular to vC(r) simply means that on-site

potentials sum up to zero, which for two sites implies

v1 = −v2 = v. (3.27)

This equation defines a 1-dimensional subspace of V where K̂, in principle, can be

inverted. In the present two-site case the K̂ matrix is invertible if k12 6= 0. Therefore

the v-represenatability subset Ω of the Hilbert space is defined by the following simple

condition

Re[ψ∗1ψ2] 6= 0. (3.28)

For all states satisfying the condition Eq. (3.28) we can invert K̂ matrix in Eq. (3.24)

and find the potential v = v1 = −v2 as a functional of the density and wave function,

v = − n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TReρ12
. (3.29)

where we substituted the explicit expressions for k12 and q1 from Eqs. (3.25) and (3.26).
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The final NLSE is obtained by inserting the potential of Eq. (3.29) into the Schrödinger

equation (3.23)

i∂tψ1 = − n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TRe[ψ∗1ψ2]
ψ1 − Tψ2, (3.30a)

i∂tψ2 =
n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TRe[ψ∗1ψ2]
ψ2 − Tψ1. (3.30b)

This system of equations perfectly illustrates the generic structure of NLSE appearing

in the TDDFT context. Firstly, as described in section 3.3, the nonlinearity is always a

rational function with enumerator and denominator having bilinear forms in the com-

ponents of the wave function ψ. For all ψ ∈ Ω [i. e. for ψ satisfying Eq. (3.28)] the

denominator never turns to zero. Secondly, the explicit time dependence enters NLSE

only via the second time derivative of the density n̈r(t) that is assumed to be continuous.

The two properties above ensure that the right hand side of our NLSE is Lipshitz in

ψ and continuous in t. By Picard-Lindelöf theorem this guarantees the existence of a

unique solution to Eqs. (3.30) for any initial state ψ(0) from Ω.

However, this is not yet the whole story. Since the density enters the equations only

via n̈r(t), our unique solution to NLSE, in general, will reproduce only the second time

derivative of the prescribed density correctly. The whole externally given density nr(t)

is recovered from NLSE if the dynamics starts from a special manifold of the “density-

consistent” initial states which are defined by the consistency conditions of Eqs. (3.13)

and (3.14).

To proceed further with our example, we represent the wave function in the polar form

ψ1(t) = |ψ1(t)|eiϕ(t)/2, ψ2(t) = |ψ2(t)|e−iϕ(t)/2, (3.31)

and substitute it into the consistency conditions. As a result Eqs. (3.13) and (3.14)

simplify as follows, respectively,

|ψr(0)| =
√
nr(0), r = {1, 2}, (3.32)

ṅ1(0) = 2T
√
n1(0)n2(0) sinϕ(0), (3.33)

where nr(0) is the (prescribed) initial density, and ṅr(0) is the initial time derivative.

The first condition, Eq. (3.32), uniquely determines the modulus of the allowed initial
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states in terms of the initial density. Finding the “density-consistent“ initial phases

is a bit more tricky as the right hand of Eq. (3.33) is not a single valued function.

Equation (3.33) has two solutions which can be written in the following form

ϕ(+)(0) = arcsin

(
ṅ1(0)

2T
√
n1(0)n2(0)

)
≡ φ0, (3.34)

ϕ(−)(0) = π − φ0, (3.35)

where arcsin stands for the principal value of the inverse sin. In other words, φ0 defined

after Eq. (3.34) is a solution to Eq. (3.33) in the interval [−π
2 ,

π
2 ]. The existence of

two solutions to the consistency conditions means that for a given density in our simple

system the manifold of density-consistent initial states consists of the following two wave

functions

ψ
(+)
1 (0) =

√
n1(0)ei

φ0
2 , ψ

(+)
2 (0) =

√
n2(0)e−i

φ0
2 (3.36)

ψ
(−)
1 (0) =

√
n1(0)e−i

φ0
2 , ψ

(−)
2 (0) = −

√
n2(0)ei

φ0
2 (3.37)

where we disregarded an irrelevant common phase factor. By substituting Eqs. (3.36)

and (3.37) into the condition of Eq. (3.28) we find that the initial states ψ(±)(0) ∈ Ω

provided φ0 6= ±π/2. Obviously this puts a restriction on the initial values of n and

ṅ. Equation (3.34) tells us that the condition φ0 6= ±π/2 actually ensures that ṅ(0) is

properly bounded [see Eqs. (3.20) and (3.21)].

It is interesting to note that if ṅ(0) = 0, then φ0 = 0 and the density-consistent initial

states Eqs. (3.36) and (3.37) can be viewed as the ground (symmetric) and the excited

(antisymmetric) states of a dimer in the presence of some static potential.

Now we can solve NLSE of Eq. (3.30) starting from one of the allowed initial states.

The solution should return the wave function and the potential as unique functionals of

the given density nr(t). Inserting the polar representation Eq. (3.31) into Eq. (3.30) we

observe that the following form of ψr(t),

ψ1(t) =
√
n1(t)eiϕ(t)/2, ψ2(t) =

√
n2(t)e−iϕ(t)/2, (3.38)
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solves NLSE if the time-dependent phase ϕ(t) satisfies the equation

ṅ1(t) = 2T
√
n1(t)n2(t) sinϕ(t). (3.39)

For each initial state from the set of Eqs. (3.36) and (3.37) this equation has a unique

solution, provided the condition k12(ψ) 6= 0 is fulfilled.

Assume that we started from the state ψ
(+)
1 (0), Eq. (3.36). Then the solution to

Eq. (3.39) reads

ϕ = arcsin

(
ṅ1

2T
√
n1n2

)
. (3.40)

This equation together with Eq. (3.38) gives the wave function as a functional of the

density. As long as this solution exists, the element k12 = 2TReρ12 of the K̂ matrix

stays positive

k
(+)
12 = 2T

√
n1n2 cosϕ =

√
4T 2n1n2 − ṅ2

1 (3.41)

To find the potential v(t) as a functional of the density we insert Eqs. (3.38) and (3.41)

into Eq. (3.29). The results takes the following form

v(+)[n] = − n̈1 + 2T 2(n1 − n2)

2
√

4T 2n1n2 − ṅ2
1

. (3.42)

This functional reproduces the result obtained in Ref. [103]. In addition there is another

solution that corresponds to another density-consistent initial state.

If we start from the second initial state, ψ
(−)
1 (0) of Eq. (3.37), we should take the second

solution of Eq. (3.39) for the phase, namely

ϕ = π − arcsin

(
ṅ1

2T
√
n1n2

)
. (3.43)

In this case k12 changes a sign,

k
(−)
12 = −

√
4T 2n1n2 − ṅ2

1, (3.44)

which implies that the sign of the potential v is also reversed

v(−)[n] =
n̈1 + 2T 2(n1 − n2)

2
√

4T 2n1n2 − ṅ2
1

. (3.45)
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Thus, for different initial conditions the NLSE machinery produces unambiguously dif-

ferent functionals v[n] and ψ[n]. This nicely displays the initial state dependence in

TDDFT [102, 120], although in the present case the dependence is very simple.

For each density-consistent initial state the unique solution to NLSE of Eq. (3.30) exists

as long as the boundary of the subset Ω is not reached. This happens if k12(ψ) = 0,

i. e. when the expression under the square root in Eqs. (3.41) or (3.44) turns into zero.

In agreement with the general discussion in section 3.3, at this point the bound on the

time derivative of the density,

|ṅ1| < 2T
√
n1n2, (3.46)

is saturated.

In our simple model we can also visualize and completely characterize the geometry

of the v-representability subset Ω in the Hilbert space H. Since we have an effective

2-level system the projective Hilbert space can be represented by a 2-sphere, known as

a Bloch sphere. Specifically, after taking out a common phase factor, each normalized

state from H is mapped to a point on a 2-sphere in R3 (see Fig. 1) by parametrizing the

wave function as follows

|ψ〉 = cos θ/2eiϕ/2 |1〉+ sin θ/2 e−iϕ/2|2〉, (3.47)

where |1〉 and |2〉 are the orthogonal states corresponding to the particle residing on

sites 1 and 2, respectively. In this mapping the moduli of the on-site amplitudes are

represented by the azimuthal angle θ, while the phase difference ϕ corresponds to the

polar angle in spherical coordinates. As we can see from Fig. 1 the line k12(ψ) = 0 divides

the projective Hilbert space into two hemispheres, left and right, with k12 > 0 and

k12 < 0. The two hemispheres represent two disconnected parts of the v-representability

subset Ω, separated by the boundary line k12 = 0. The boundary line contains all states

for which the statements of Theorem 3.3.1 do not hold. Starting from any point on those

hemispheres, i. e. from a state ψ ∈ Ω, we uniquely recover the time evolution of the

system with a given density by solving NLSE of Eq. (3.30). As long as the trajectory

stays within the original hemisphere and does not touch the boundary, the one-to- one

density-potential map exists with the functional v[n] given by Eq. (3.42) or by Eq. (3.45),

depending on the hemisphere. Whether or not it is possible to construct a unique and
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Figure 3.2: Each normalized state in the Hilbert space H maps to a point on the
Bloch sphere. The north |1〉 and the south |2〉 poles correspond to the particle on sites
1 and 2. The line k12 = 0 divides the sphere into two (left and right) hemispheres

corresponding to two disconnected parts of the v-representability subset Ω.

universal analytic continuation for crossing the boundary and covering the whole subset

Ω is an interesting question which cannot be answered at the level of Theorem 3.3.1.

3.5 Time-dependent v-representability for a system evolv-

ing from the ground state

In this section we return to the most general case, and show that the ground state of a

lattice N -particle system always belongs to the v-representability subset Ω. This implies

that the lattice TDDFT is guaranteed to exist if the dynamics starts from the ground

state.

Assume that ψk = |k〉 form a complete set of eigenstates for the lattice many-body

Hamiltonian describing N -particle system in the presence of a static scalar potential

v0(r). Let ψ0 = |0〉 be the ground state. We are going to prove that the matrix K̂(ψ0)

evaluated at the ground state is strictly negative definite in the subspace of potentials
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that are orthogonal to a space-constant vector VC , i. e.,

V T K̂(ψ0)V ≡
∑
r,r′

v(r)kr,r′v(r′) < 0, (3.48)

for all M -dimensional vectors V = {v(r)} which satisfy the following orthogonality

relation

V TVC = C
∑
r

v(r) = 0, (3.49)

where V T stands for the transposed vector.

Our starting point is the f -sum rule (see, e. g., Ref. [121]) for the density-density response

function χr,r′(ω) = 〈〈n̂r; n̂r′〉〉ω:

− 2

π

∫ ∞
0

ωImχr,r′(ω)dω = i〈0|[ ˙̂nr, n̂r′ ]|0〉. (3.50)

To calculate the commutator in the right hand side of Eq. (3.50) we switch to the second

quantized representation and write the equation of motion for the density operator

n̂r = â†râr,
dn̂r
dt

= i
∑
r′

(Tr,r′ â
†
râr′ − Tr′,râ

†
r′ âr), (3.51)

where ar and â†r are the on-site annihilation and creation operators. Equation (3.51)

is nothing but the operator form of the continuity equation. Using Eq. (3.51) one can

easily calculate the commutator entering the right hand side of Eq. (3.50),

i[ ˙̂nr, n̂r′ ] = −Tr,r′ â†râr′ + δrr′
∑
r′′

Tr,r′′ â
†
râr′′ + h.c. (3.52)

Taking the ground state expectation value of this equation and comparing the result

with Eq. (3.12) we find

i〈0|[ ˙̂nr, n̂r′ ]|0〉 = −kr,r′ . (3.53)

Therefore the right hand side of the lattice f -sum rule is identified with the K̂ matrix

entering the definition of the v-representability subset.2

2This result is not surprizing as the matrix K̂ is a lattice analog of the Sturm-Liouville operator
m−1∇n∇, while the latter defines the right hand side of the usual f -sum rule in the contunuum (it
reduces to q2n/m for a homogeneous system).
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On the other hand, for the imaginary part of density response function we have the

following spectral representation [121]

∞∫
0

ωImχr,r′(ω)dω = −2πRe
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉, (3.54)

where ωk0 = Ek − E0 are excitation energies of the system. Substitution of Eqs. (3.53)

and (3.54) into Eq. (3.50) leads to the spectral representation for the elements of K̂

matrix

kr,r′ = −4Re
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉. (3.55)

Finally, inserting kr,r′ of Eq. (3.55) into the left hand side of Eq. (4.39), we arrive to the

following remarkable result

V T K̂(ψ0)V = −4
∑
k

ωk0

∣∣∣∑
r

v(r)〈0|n̂r|k〉
∣∣∣2

= −4
∑
k

ωk0|〈0|v̂|k〉|2 ≤ 0, (3.56)

where v̂ is a many-body operator corresponding to the potential v(r),

v̂ =
∑
r

v(r)n̂r. (3.57)

Let us show that the equality in Eq. (3.56) holds only for a space-constant potential

vC(r) = C. Since each term in the sum in Eq. (3.56) is non-negative, the result of

summation is zero if and only if

〈0|v̂|k〉 = 0, for all k 6= 0. (3.58)

Physically the right hand side of Eq. (3.56) is proportional to the energy absorbed by a

system after a small amplitude pulse of the form v(r; t) = v(r)δ(t). Then the condition

Eq. (4.44) simply states that nothing is absorbed only if the potential v(r) does not

couple the ground state to any excited state.

Assume that Eq. (4.44) is fulfilled and expand the vector v̂|0〉 in the complete set of

states {|k〉}

v̂|0〉 =
∑
k

|k〉〈k|v̂|0〉 = |0〉〈0|v̂|0〉 ≡ λ|0〉. (3.59)
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Therefore the condition of Eq. (4.44) implies that the ground state |0〉 is an eigenfunction

of the operator v̂. Since v̂ corresponds to a local multiplicative one-particle potential,

this can happen only if the potential is a constant. For clarity we write Eq. (4.45) in

the coordinate representation

N∑
j=1

v(rj)ψ0(r1, ..., rN ) = λψ0(r1, ..., rN ). (3.60)

Obviously this equation can be fulfilled only if the function v(r) takes the same value

λ/N on all lattice sites, which corresponds to a space-constant potential. A notable

exception is a geometrically disconnected lattice consisting of several pieces that cannot

be connected by a path composed of links with nonzero Tr,r′ . In this case the arguments

of the wave function ψ0(r1, ..., rN ) form “disconnected groups” of coordinates corre-

sponding to particles residing in the disconnected parts of the system. The coordinates

of different disconnected groups take values in “non-overlapping” parts of the lattice.

Since the number of particles in each part (number of coordinates in each group) is fixed,

Eq. (3.60) can also be satisfied with a piecewise constant potential.

Therefore we arrive to the following conclusion: for a connected lattice Eq. (4.44) is ful-

filled, and the inequality in Eq. (3.56) is saturated only for a constant in space potential.

For all potentials which are orthogonal to a constant in a sense of Eq. (4.40) the strict

inequality in Eq. (3.56) takes place. This means that matrix K̂(ψ0) is negative definite

and thus invertible in the M − 1-dimensional subspace of V orthogonal to a constant

vector VC . In other words, the ground state of an N -particle system on a connected

lattice does belong to the v-representability subset Ω. This result combined with the

general existence theorem of section 3.3 proves the following particular version of the

time-dependent v-representability theorem.

Theorem 3.5.1 (Ground state v-representability ). Let the initial state ψ0 for the time-

dependent many-body problem on a connected lattice correspond to a ground state in

the presence of some scalar potential v0(r). Then any density n(r; t) which satisfies

the consistency conditions of Eqs. (3.13) and (3.14) and has a continuous second time

derivative is locally v-representable.

This theorem is in a clear agreement with the known statement of v-representability in

the linear response regime [11].
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It is worth noting that the above ground state-based argumentation can be straight-

forwardly extended to a thermal equilibrium state. In this case Eq. (3.56) takes the

form

V T K̂βV = 4
∑
k>l

ωkl
e−βEk − e−βEl

Z
|〈l|v̂|k〉|2, (3.61)

where β is the inverse temperature, K̂β is the K̂ matrix evaluated for the thermal

equilibrium state, Z is the partition function, and ωkl = Ek−El. By the same token the

form defined by Eq. (3.61) is strictly negative for all potentials orthogonal to a constant

vector. Therefore Theorem 2 should also apply to the ensemble version of TDDFT

based on the von Neuman equation for the N -body density matrix. Of course in this

case we need to prove the ensemble extension of Theorem 1, but currently this also

seems relatively straightforward.



Chapter 4

Quantum electrodynamical

time-dependent

density-functional theory for

many-electron systems on a

lattice

4.1 Introduction

In the present chapter we extend the uniqueness and existence theorems of the lattice

TDDFT to systems strongly interacting with quantized electromagnetic field. This

generalization, which can be named as QED-TDDFT, has been proposed recently in

Ref. [40].

To make the idea of the proof more transparent we start with the simplest nontrivial

system of one electron on a two-site lattice (a Hubbard dimer) coupled to a single

photonic mode. It is worth noting that formulation of TDDFT for this system has

This chapter is a part of the article ”Quantum electrodynamical time-dependent density-functional
theory for many-electron systems on a lattice”, Physical Review B 90, 195149 (2014), by Mehdi Farzaneh-
pour, I. V. Tokatly.
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its own value. Indeed, a dimer coupled to a quantum Bose field is equivalent to such

well known and popular models such as the quantum Rabi model and the spin-boson

model. [42–44] For this system we prove that, provided some well-defined conditions

are fulfilled, there exists a unique mapping from the time-dependent on-site density and

the expectation value of the bosonic coordinate to the wave function and the external

driving potentials. Afterwards we extend the QED-TDDFT mapping theorem to the

general case of N interacting electrons on an M -site lattice coupled to multiple photonic

modes. Finally we extend theorem 3.5.1 to cover the local existence/v-representability of

the dynamics started from the ground state of general lattice Hamiltonian.

This chapter is structured as the following. In section 4.2 we present a complete formu-

lation of QED-TDDFT for the Hubbard dimer coupled to a single photonic mode. We

derive the equation of motion for the expectation value of the field and the force balance

equation and construct the corresponding universal (NLSE). Then we prove the mapping

theorem of QED-TDDFT for this model by applying the known results from the theory

of semilinear PDE [114, 115]. In section 4.3 we generalize the formalism to the system of

many particles on a many-site lattice which is coupled to multiple photonic modes. We

derive the corresponding NLSE to the many-body system and then formulate and prove

the general existence and uniqueness theorem for the lattice QED-TDDFT. Section 4.4

presents a practically important case of a system evolving from its ground state. The

main outcome of this section is the theorem of a local v-representability for the initial

ground state. In Conclusion we summarize our results.

4.2 QED-TDDFT for a Hubbard dimer coupled to a single

photonic mode

To make our approach more transparent and clear we first consider a simple system of

one quantum particle on a two-site lattice, which is coupled to a single mode photonic

field. The state of the system at time t is characterized by the electron-photon wave

function ψi(p; t) = 〈i, p|Ψ(t)〉, where the index i = {1, 2} corresponds to the particle

“coordinate” and takes values on the lattice sites, and the real continuum variable p

describes the photonic degree of freedom.
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Figure 4.1: A schematic view of a two-site lattice in a cavity. The electron, which
can tunnel from one site to the other with the hopping rate T , experiences the on-site
potential vi(t) specific to that site. The photonic field in the cavity is driven by a time-
dependent external dipole moment dext(t). The wave length of the electromagnetic field
2π/ω is proportional to the cavity size and assumed to be much larger than the lattice
size, so that we can adopt the dipole approximation for the electron-photon interaction.

In this model the electronic density is coupled to the external on-site potential vi(t)

which acts on the individual sites, while the photonic subsystem can be driven (excited)

independently by an external time-dependent dipole moment dext(t). Assuming that the

wavelength of the photon field is much larger than the size of the system, we adopt the

dipole approximation, see section 2.4. It is convenient to use the length gauge for the

photon field. In this case the photon variable p is associated to the electric field which

is coupled to the electron dipole moment [40, 41]. Figure 4.1 shows a schematic view of

a two-site lattice in a quantum cavity.

The following time-dependent Schrödinger equation governs the time evolution of the

electron-photon wave function ψi(p; t) from a given initial state ψi(p, t0)

i∂tψ1(p; t) = −Tψ2(p; t) +

(
−∂2

p

2
+
ω2p2

2
+ dext(t)p+ λp+ v1(t)

)
ψ1(p; t),(4.1a)

i∂tψ2(p; t) = −Tψ1(p; t) +

(
−∂2

p

2
+
ω2p2

2
+ dext(t)p− λp+ v2(t)

)
ψ2(p; t),(4.1b)

where the real coefficient T corresponds to the rate of hopping from one site to the other,

ω is the frequency of the photon mode and λ is the electron-photon coupling constant

(see figure 4.1).

Formally Eqs. (4.1) describes a driven two-level system coupled to a quantum harmonic
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oscillator. The Hamiltonian of this system is a discretized version of the general electron-

photon Hamiltonian in the length gauge Eq. (2.75). Because of the gauge invariance the

physics is not changed if we add a global time-dependent constant to the potential.

Therefore without loss of generality we can adopt the gauge condition v1 + v2 = 0 and

define the on-site potential as follows v(t) = v1(t) = −v2(t). With this definition the

Hamiltonian in Eq. (4.1) takes the form

Ĥ(t) = −T σ̂x + v(t)σ̂z + λpσ̂z −
∂2
p

2
+
ω2p2

2
+ dext(t)p. (4.2)

σ̂x, and σ̂z are the Pauli matrices, and a 2× 2 unit matrix is assumed in the last three

terms. The first two terms in Eq. (4.2) correspond to a two-level system (spin 1/2),

while the last three terms describe a driven harmonic oscillator. Finally the third term

in Eq. (4.2) is a linear coupling between the discrete and continuous variables. It is

now clear the Eq. (4.1) is equivalent to the Schrödinger equation for the Rabi model

or single mode spin-boson model[42–44]. Therefore the subsequent discussion and all

results of this section are directly applicable to these models. We also note that a

detailed derivation of Hamiltonian Eq. (4.2) for a nonrelativistic system in a cavity can

be found in Ref. [41].

Now, let us turn to the formulation of QED-TDDFT. In general all DFT-like approaches

assume that the state of the system is uniquely determined by a small set of basic

observables, such as the density in TDDFT, the current in TDCDFT. Below we prove

a theorem which generalizes the lattice-TDDFT theorem 3.3.1 to the system coupled to

a quantum oscillatoric degree of freedom as defined in Eq. (4.1). Namely, we will prove

that, provided that some well defined conditions are fulfilled, the electron-photon wave

function Ψ(t) is uniquely determined by the on-site density ni and the expectation value

of the photonic coordinate P = 〈p〉.

In our formulation we follow the NLSE approach to TDDFT[9, 13, 104–106] and adopt

the same general logic as in 3. We start with defining the basic observables for our two-

site model. The first basic variable, is the on-site density ni – the number of particles

on the site i

ni(t) =

∫
dp|ψi(p; t)|2. (4.3)
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For the electron-photon system the second, photon-related variable is required. The

most natural choice [40, 41] is the expectation value P of the photonic coordinate p

P =

∫
dp(|ψ1(p; t)|2 + |ψ2(p; t)|2)p. (4.4)

The next step is to find the equations which relate the basic observables, the density ni

and the field average P , to the “external potentials”, the on-site potential vi and the

external dipole moment dext. Therefore we proceed by deriving the equations of motion

for these two fundamental variables.

In order to derive the relevant equation of motion for ni we calculate the time-derivative

of (4.3) and then substitute the derivatives of the wave function from the Schrödinger

equation (4.1). The result takes the following form

ṅ1(t) = −2Im[Tρ12(t)], (4.5)

where ṅ = ∂tn, and ρ12(t) is the density matrix ,

ρ12 =

∫
ρ12(p; t)dp =

∫
ψ∗1(p; t)ψ2(p; t)dp. (4.6)

The conservation of the particles dictates that the change in the density in one site

is equal to minus the change in the other site ṅ2 = 2ImTρ12. Obviously Eq. (4.5) is

a lattice version of the continuity equation for site 1. Since in the left hand side of

Eq. (4.5) we have the time derivative of the on-site density, the right hand side should

be identified with a current flowing along the link connecting the two sites

J12(t) = 2Im[Tρ12(t)]. (4.7)

Differentiating the continuity equation (4.5) with respect to time and replacing the

derivative of the wave function from the Schrödinger equation we get an equation which

connects the on-site density ni to the on-site potential vi

n̈1(t) = −2T
(

Re[ρ12](v1(t)− v2(t))

+T (n1 − n2) + 2λ

∫
Re[ρ12(p)]pdp

)
. (4.8)
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Physically this equation can be interpreted as the (discrete) divergence of the force

balance equation for the two-site model.

A special role of Eq. (4.8) for TDDFT follows from the fact that it explicitly relates the

potential disbalance v1(t) − v2(t) to the density ni(t) and its derivatives. Like before,

the conservation of the particle imposes n̈2 = −n̈1. Hence, the force balance equation

for n2(t) is obtained from Eq. (4.8) by changing the sign in the right hand side.

It is worth noting that the coefficient of the potential disbalance, v1(t)−v2(t), in the force

balance equation (4.8) is the kinetic energy k12 = 2TRe[ρ12] therefore for the current

J12 and kinetic energy k12 we have:

K12 + iJ12 = 2Tρ12. (4.9)

Importantly, Eq. (4.8) contains only the potential disbalance v1 − v2 which reflects the

well known gauge redundancy of TDDFT. For a given density the force balance equation

fixes the on-site potential up to a constant. In order to resolve this issue we fix the

gauge by considering on-site potentials which sum up to zero v1 = −v2 = v. This can be

interpreted as a switching from the whole two dimensional space of all allowed potentials

to the one dimensional space of equivalence classes for physically distinct potentials.

Next, we need to derive a similar equation for P . So we differentiate (4.4) with respect

to t and simplify the right hand side using the Schrödinger equation (4.1) and the result

is as follows:

Ṗ = Im
[ ∫ (

ψ∗1∂pψ1 + ψ∗2∂pψ2

)
dp
]
. (4.10)

For brevity we suppressed the explicit p- and t-dependence of the wave function.

By differentiating Eq. (4.10) with respect to time and again substituting the time deriva-

tives from the Schrödinger equation (4.1) we get an equation which relates dext to P , P̈

and ni

P̈ = −ω2P − λ(n1 − n2)− dext(t). (4.11)

This equation is, in fact, the inhomogeneous Maxwell equation projected on the single

photon mode [41].
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In the next subsection we will use the force balance equation (4.8) and equation of

motion (4.11) to analyze the existence of a TDDFT-like theory for a two-site lattice

coupled to a photonic field.

Statement of the mathematical problem and the basic existence theorem

The standard TDDFT is based on the existence of a one-to-one map between the time-

dependent density and the external potential. In the case of the electron-photon system

the map is slightly different. Here the two basic observables, the on-site density ni and

the expectation value of the field P , are mapped to the two external fields, the on-site

potential v(t) and the external dipole moment dext(t).

Equations (4.1), (4.3) and (4.4) uniquely determine the instantaneous wave function

Ψ(t), the on-site density ni and the field average P as functionals of the initial state Ψ0 ,

the on-site potential v(t) and the external dipole moment dext(t). This defines a unique

“direct” map {Ψ0, v, dext} → {Ψ, n, P} that is related to the standard direct quantum

mechanical problem – reconstruction of the wave function Ψ(t) from the initial data and

the external potentials.

The TDDFT formalism for this problem relies on the existence of a unique map from the

density n, the field average P and Ψ0 to the potential v, the external dipole moment dext,

and the wave function Ψ. In other words, TDDFT assumes the existence of a unique

solution to the “inverse” problem of reconstructing the state Ψ(t) and the potentials

from the given observables and the initial data. In the following we will refer to the

corresponding map {Ψ0, n, P} → {Ψ, v, dext} as the“inverse map” to indicate that it is

related to the above inverse problem. To prove the inverse map we follow the NLSE

approach to TDDFT-type theories [9, 13, 104–106].

Assuming ni(t) and P (t) are given functions of time, we express v and dext from the

equations (4.8) and (4.11) as follows

v = −
n̈1 + 2T 2(n1 − n2) + 4Tλ

∫
Re[ρ12(p)]pdp

4TRe[ρ12]
, (4.12)

dext = −P̈ − ω2P − λ(n1 − n2), (4.13)

where we assumed that Re[ρ12] 6= 0.
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We note that at any time, including the initial time t = t0 , the given density has to

be consistent with the wave function. At t = t0 this means that the right hand side

of Eq. (4.3) evaluated at the initial wave function Ψ0 has to be equal to ni(t0) in the

left hand side. The same follows for the first derivative of the density ṅi and the field

average P and its first derivative Ṗ . All of them should be consistent with the initial

state Ψ0 through Eqs. (4.5), (4.4) and (4.10) respectively. The consistency conditions

which should be fulfilled are the following

ni(t0) =

∫
dp|ψi(p; t0)|2, (4.14a)

ṅ1(t0) = −2Im[Tρ12(t0)], (4.14b)

P (t0) =

∫
dp p

(
|ψ1(p; t0)|2 + |ψ2(p; t0)|2

)
, (4.14c)

Ṗ (t0) = Im
[ ∫

dp
(
ψ∗1(p; t0)∂pψ1(p; t0)

+ ψ∗2(p; t0)∂pψ2(p; t0)
)]
. (4.14d)

The on-site potential v of Eq. (4.12) and the external dipole moment dext of Eq. (4.13)

can be substituted as functionals of n, P and Ψ into the Schrödinger equation (4.1). The

result is a universal NLSE in which the Hamiltonian is a function of the instantaneous

wave function and the (given) basic variables

i∂tΨ(t) = H[n, P,Ψ]Ψ(t). (4.15)

Now the question of existence of a unique QED-TDDFT map {Ψ0, ni, P} → {Ψ, v, dext}

can be mathematically formulated as the problem of existence of a unique solution to

NLSE (4.15) with given ni(t), P (t) and Ψ0.

Theorem 4.2.1 (existence of QED-TDDFT for a Hubbard dimer coupled to a photonic

mode). Assume that the on-site density ni(t) is a positive, continuous function of time,

which has a continuous second derivative and adds up to unity, n1(t) + n2(t) = 1.

Consider P (t) to be a continuous function of time with a continuous second derivative.

Let Ω be a subset of the Hilbert space where Re[ρ12] 6= 0. If the initial state Ψ0 ∈ Ω ,

and the consistency conditions of Eqs. (4.14) hold true, then:

(i) there is an interval around t0 in which NLSE (4.15) has a unique solution and,

therefore, there exists a unique map {Ψ0, ni, P} → {Ψ, v, dext}.
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(ii) The solutions (i. e. the QED-TDDFT map) is not global in time if at some t∗ > t0

the boundary of Ω is reached.

Proof. By the condition of the theorem, Ψ0 ∈ Ω where Re[ρ] 6= 0. Therefore the on-site

potential v can be expressed in terms of the density and the wave function as given by

(4.12), and the Hamiltonian Ĥ[n, P,Ψ] in the universal NLSE is well defined.

Let us rewrite NLSE (4.15) in the following form

i∂tΨ =
(
Ĥ0 + Ĥ1[n, P,Ψ]

)
Ψ, (4.16)

where Ĥ0 is the time-independent (linear) part of the Hamiltonian,

Ĥ0 = −1

2
∂2
p +

1

2
ω2p2 + λpσ̂z − T σ̂x, (4.17)

and Ĥ1 contains all time-dependent, in particular non-linear, terms,

Ĥ1[n, P,Ψ] = dext[n, P ]p+ v[n, P,Ψ]σ̂z. (4.18)

Here dext[n, P ] and v[n, P,Ψ] are defined by Eqs. (4.13) and (4.12), respectively.

Since Ĥ0 is the Hamiltonian of the static shifted harmonic oscillator, it defines a continu-

ous propagator in the Hilbert space of square integrable functions. Therefore Eq. (4.16)

can be transformed to the following integral equation,

Ψ(t) = e−iĤ0(t−t0)Ψ0 (4.19)

−i

∫ t

t0

e−iĤ0(t−s)Ĥ1[n(s), P (s),Ψ(s)]Ψ(s)ds.

To prove the existence of solutions to this equation we can use well established theorems

from the theory of quasilinear PDE. [114, 115] 1 In particular, we apply the following

result. Consider an integral equation of the form,

u(t) = W (t, t0)u0 +

∫ t

t0

W (t, s)Ks(u(s))ds, (4.20)

1Theorem 8 page then of Harauz.
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where W (t, s) is a continuous linear propagator on T = [t0,∞) and the kernel Kt(u) is

continuous function of time, which is locally Lipschitz in a Banach space B. Then there

is an interval [t0, t
∗) where Eq. (4.20) has a unique continuous solution.

In our case we consider L2 as the proper Banach space B. The kernel Kt(Ψ) =

Ĥ1[n(t), P (t),Ψ]Ψ in Eq. (4.19) is continuous and Lipschitz in L2 if n(t), n̈(t), P (t)

and P̈ (t) are continuous functions of time, Ψ ∈ Ω, n1, n2 > 0, n1 + n2 = 1 and the

consistency conditions Eqs. (4.14) are fulfilled. Hence if all conditions of the theorem

are satisfied Eq. (4.19) has a unique solution. Moreover since in this case Ψ0 is in the

domain of H0, Ψ0 ∈ D(H0), there exists a unique differentiable (strong) solution of

Eq. (4.19) which proves the statement (i) of the theorem.

The extension theorems for quasilinear PDE imply that the local solution cannot be

extended beyond some maximal existence time t∗ > t0 only in two cases: first, at t→ t∗

the solution becomes unbounded or, second, at t→ t∗ it reaches the boundary of Ω. In

our case the solution is guaranteed to be normalized and thus bounded. Therefore we

are left only with the second possibility, which proves the statement (ii) and completes

the proof of the theorem.

The above theorem generalizes the results of Ref. [41] where the uniqueness (but not the

existence) of the map {Ψ0, ni, P} → {Ψ, v, dext} has been proven for analytic in time

potentials using the standard Taylor expansion technique.

The Theorem 4.2.1 can be straightforwardly generalized to the case of multiple photon

modes. The only difference is that Ĥ0 in Eq. (4.17) becomes the Hamiltonian of a

multidimensional shifted harmonic oscillator. The rest of the proof remains unchanged.

This proves the existence of QED-TDDFT for the spin-boson model in its standard

form [43]. A less obvious generalization for the system of many interacting electrons on

a many-site lattice is presented in the next section.

4.3 QED-TDDFT for many electrons on many-site lattices

interacting with cavity photons

In the previous section we proved the QED-TDDFT existence theorem for a system of

one electron on a two-site lattice coupled to a photonic mode. Below we generalize our
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results to the case of N interacting electrons on an M -site lattice coupled to L pho-

tonic modes. The state of the system is described by an electron-photon wave function

ψ(r1, · · · , rN ; {p}) where coordinates ri of the particles (i = 1, 2, · · · , N) take values on

the lattice sites and {p} is the set of continuous coordinates describing the photonic

(oscillatoric) degrees of freedom {p} = {p1, p2, ..., pL}. Again we assume that the elec-

tronic subsystem is driven by classical on-site potentials v(r; t) and each photonic mode

is coupled to corresponding external dipole moment dαext(t). As usual, assuming that the

size of the lattice is much smaller than the wave length of the photon field, we describe

the electron-photon coupling at the level of the dipole approximation with λα being the

coupling constant to the α-photon.

The following time-dependent Schrödinger equation describes the time evolution of the

system from the initial state ψ0(r1, · · · , rN ; {p})

i∂tψ(r1, ..., rN ; {p}) = −
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; {p})

+

N∑
i=1

v(rj ; t)ψ(r1, ..., rN ; {p}) +
∑
j>i

wri,rjψ(r1, ..., rN ; {p})

+
K∑
α=1

[
− 1

2
∂2
p +

1

2
ω2
αp

2
α + dαext(t)pα

]
ψ(r1, ..., rN ; {p})

+
N∑
i=1

K∑
α=1

λα · ripαψ(r1, ..., rN ; {p}), (4.21)

where the real coefficients Tr,r′ = Tr′,r correspond to the rate of hopping from site r

to site r′ (for definiteness we set Tr,r = 0), and wr,r′ is the potential of a pairwise

electron-electron interaction.

Following the logic of section 4.2 we define the on-site density n(r) and the expectation

value of the field Pα for a mode α, which are the basic variables for the QED-TDDFT

n(r) = N
∑

r2,...,rN

∫
|ψ(r, r2, ..., rN ; {p})|2dp, (4.22)

Pα =
∑

r1,...,rN

∫
pα|ψ(r, ..., rN ; {p})|2dp, (4.23)

where dp = dp1 · · · dpL.
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Similar to the two-site case we derive the force balance equation by calculating the

second derivative of the density (4.22) and using the Schrödinger equation (4.21) to

simplify the terms with the time derivative of the wave function

n̈(r) = 2Re
∑
r′

Tr,r′ρ(r, r′)(v(r′; t)− v(r; t)) + q(r; t) + f(r; t), (4.24)

where q(r; t) is the lattice divergence of the internal forces

q(r; t) = − 2Re
∑
r′,r′′

Tr,r′
[
Tr′,r′′ρ(r, r′′)− Tr,r′′ρ(r′, r′′)

+ ρ2(r, r′′, r′)(wr,r′′ − wr′,r′′)
]
, (4.25)

and f(r; t) is the force exerted on electrons from the photonic subsystem

f(r; t) = 2Re
∑
α

∑
r′

Tr,r′λα · (r′ − r)

∫
pαρ(r, r′; pα)dpα. (4.26)

Here ρ(r, r′) is the one-particle density matrix

ρ(r, r′) =

∫
ρ(r, r′; pα)dpα (4.27)

= N
∑

r2,...,rN

∫
ψ∗(r, r2, ..., rN ; {p})ψ(r′, r2, ..., rN ; {p})dp

and ρ2(r, r′′, r′) is the two-particle density matrix

ρ2(r, r′′, r′) = N(N − 1)
∑

r3,...,rN

∫ [
ψ∗(r, r′′, ..., rN ; {p})

×ψ(r′, r′′, ..., rN ; {p})
]
dp (4.28)

The equation of motion for the field average Pα (4.23) is derived in the same manner as

in section 4.2 by calculating the second time derivative of Pα and using the Schrödinger

equation (4.21),

P̈α = −ω2
αPα − dαext − λα · d, (4.29)

where d is the total dipole moment of the N -electron system

d =
∑
r

rn(r). (4.30)
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The existence of QED-TDDFT is equivalent to the existence of the inverse map {Ψ0, n(r), Pα} →

{Ψ, v, dαext}. To study this map we compile the universal NLSE by expressing the on-

site potential v(r) and the external dipole moment dαext in terms of the fundamental

observables n(r) and Pα, and the wave function Ψ.

To find the dipole moment dαext as a functional of the field average Pα and the density

n(r) we only need to rearrange Eq. (4.29)

dαext = −
(
P̈α + ω2

αPα + λα · d
)
. (4.31)

The problem of finding the potential v(r) as a functional of n(r) and Ψ is more involved

[106] as we need to solve the system of M linear equations, Eq. (4.24), for v(r). Let us

first rewrite (4.24) in a matrix form as follows

K̂[Ψ]V = S[n̈,Ψ], (4.32)

where K̂ is a real symmetric M ×M matrix with elements

kr,r′ [Ψ] = 2Re

[
Tr,r′ρ(r, r′)− δr,r′

∑
r′′

Tr,r′′ρ(r, r′′)

]
(4.33)

and V and S are M -dimensional vectors with components

vr = v(r), (4.34a)

sr[n̈,Ψ] = −n̈(r)− q[Ψ](r)− f [Ψ](r) . (4.34b)

The problem of inverting (solving for v(r)) the force balance equation (4.32) for a general

lattice, in the context of the standard electronic TDDFT, is analyzed in the previous

chapter. The same argumentation regarding the properties of the matrix K̂ is applicable

in the present case. Solving Eq. (4.24) for the on-site potential v(r) is equivalent to

multiplying both sides of Eq. (4.32) by inverse of the K̂-matrix. Therefore the matrix

K̂ must be non-degenerate. At this point it is worth noting that because of the gauge

invariance K̂ matrix (4.33) always has at least one zero eigenvalue that corresponds

to a space-constant eigenvector. Therefore if V is the M -dimensional space of lattice

potentials v(r), then the invertibility/nondegeneracy of K̂ should always refer to the

invertibility in an M − 1-dimensional subspace of V, which is orthogonal to a constant
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vector vC(r) = C. In more physical terms this means that the force balance equation

(4.33) determines the self-consistent potential v[n,Ψ](r) only up to an arbitrary constant,

like Eq. (4.8) in section 4.2. Therefore in the orthogonal subspace of V we have

V = K̂−1S, (4.35)

where by K̂−1 we mean inversion in the subspace of V. Equation (4.35) is the required

functional v[n,Ψ](r) which can be used to construct the universal NLSE.

Finally, like in the two-site case (see section 4.2) the initial state Ψ0, the density n(r)

and the field average Pα should satisfy the consistency conditions at t = t0

n(r; t0) = N
∑

r2,...,rN

∫
|ψ0(r, ..., rN ; {p})|2dp, (4.36a)

ṅ(r; t0) = −2Im[
∑
r′

Tr,r′ρ0(r, r′)], (4.36b)

Pα(t0) =
∑

r1,...,rN

∫
pα|ψ0(r1, ..., rN ; {p})|2dp, (4.36c)

Ṗα(t0) = Im
∑

r1,...,rN

∫ [
ψ∗0(r1, ..., rN ; {p})

× ∂pαψ0(r, ..., rN ; {p})
]
dp. (4.36d)

By substituting the on-site potential v(r) from Eq. (4.35), and the field average Pα from

Eq. (4.31) into the Schrödinger equation (4.21) we find the proper NLSE

i∂tΨ(t) = H[n, P,Ψ]Ψ(t), (4.37)

which we use to prove the existence of the unique inverse map {Ψ0, n(r), Pα} → {Ψ, v(r), dαext}

and thus the existence of the QED-TDDFT in a close analogy with the Theorem 4.2.1.

Theorem 4.3.1 (existence of the QED-TDDFT for lattice systems coupled to cavity pho-

tons). Assume that a given time-dependent density n(r; t) is nonnegative on each lattice

site, sums up to the number of particles N , and has a continuous second time derivative

n̈(r; t). Also assume that Pα(t) is a continuous function of t and has a continuous sec-

ond time derivatives P̈α(t). Let Ω be a subset of the N -particle Hilbert space H where

the matrix K̂[Ψ] (4.33) has only one zero eigenvalue corresponding to the space-constant

vector. If the initial state Ψ0 ∈ Ω, and at time t0 the consistency conditions of Eq. (4.36)

are fulfilled, then:
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(i) There is a time interval around t0 where the many-body NLSE (4.37) has a unique

solution that defines the wave function Ψ(t), the external potentials v(t) and dαext(t) as

unique functionals of the density n(r; t), field average Pα, and the initial state Ψ0;

(ii) The solution of item (i) is not global in time if and only if at some maximal existence

time t∗ > t0 the boundary of Ω is reached.

The proof of this theorem goes along the same lines as the proof of Theorem 4.2.1 in

section 4.2 . We transform NLSE (4.37) to a multidimensional integral equation similar

to (4.19) and then apply the general existence results [114, 115] for equations of the

type of Eq. (4.20) to show that the statements (i) and (ii) are in fact true. We skip the

details as the procedure is mostly a straightforward repetition of the proof presented in

section 4.2.

4.4 Time-dependent v-representability for a system evolv-

ing from the ground state

In this section we will show that the ground state of a quite general lattice Hamiltonian

belongs to the v-representability subset Ω. This implies that the map {Ψ0, n, Pα} →

{Ψ, v, dαext} is guaranteed to exist if the dynamics starts from the ground state. The

main theorem of this section is a generalization of Theorem 3.5.1.

Consider the following lattice Hamiltonian of many mutually interacting electrons cou-

pled to photonic modes

Ĥα,β,γ = (T̂ + V̂ + αŴe−e)⊗ Îph + Îe ⊗ Ĥph + βHe−ph, (4.38)

where T̂ is the usual lattice operator of the kinetic energy, V̂ corresponds to the interac-

tion with a local external potential, Ŵ describes the electron-electron interaction, Ĥph

is the photonic Hamiltonian and He−ph is the Hamiltonian for the interaction between

electrons and the photon modes, Îph and Îe are, respectively, the unit matrices in the

photonic and the electronic sectors of the Hilbert space, and α and β are real coefficients.

Here we demonstrate that the ground state of the Hamiltonian (4.38), for any α, β ∈ R

and any on-site potential, belongs to the v-representability subset Ω if all terms in
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Eq. (4.38) except for T̂ commute with the density operator n̂r. The proof of this quite

general statement closely follows the proof of the Theorem 3.5.1. Therefore, below we

only briefly go through the main line of arguments.

Assume that Ψk = |k〉 form a complete set of eigenstates for the Hamiltonian (4.38)

and let Ψ0 = |0〉 be the ground state. We will show that the matrix K̂[Ψ0] evaluated

at the ground state is strictly negative definite in the subspace of potentials that are

orthogonal to a space-constant vector VC . That is,

V T K̂[Ψ0]V ≡
∑
r,r′

v(r)kr,r′v(r) < 0, (4.39)

for all M -dimensional vectors V = {v(r)} which are orthogonal to the spatially constant

potential

V TVC = C
∑
r

v(r) = 0, (4.40)

where V T stands for a transposed vector. Therefore K̂[Ψ0] is nondegenerate in the

subspace orthogonal to the constant potentials.

Using the f -sum rule and the spectral representation of the density-density response

function (see, for example, Ref. [122]) one can represent the elements of K̂-matrix

Eq. (4.33) as follows (see chapter 3 for details)

kr,r′ [Ψ0] = −4Re
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉. (4.41)

where ωk0 = Ek − E0 is excitation energy of the system from the ground state to the

state k.

Substituting kr,r′ of Eq. (4.41) into the left hand side of Eq. (4.39) we find the following

result

V T K̂[Ψ0]V = −4
∑
k

ωk0

∣∣∣∑
r

v(r)〈0|n̂r|k〉
∣∣∣2

= −4
∑
k

ωk0|〈0|v̂|k〉|2 ≤ 0, (4.42)

where v̂ is an operator corresponding to the potential v(r),

v̂ =
∑
r

v(r)n̂r. (4.43)
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The equality in Eq. (4.42) holds only for a space-constant potential vC(r) = C. Indeed,

since each term in the sum in Eq. (4.42) is non-negative, the result of summation is zero

if and only if

〈0|v̂|k〉 = 0, for all k 6= 0. (4.44)

Assuming that Eq. (4.44) is fulfilled and expanding the vector v̂|0〉 in the complete set

of states {|k〉} we get

v̂|0〉 =
∑
k

|k〉〈k|v̂|0〉 = |0〉〈0|v̂|0〉 ≡ λ|0〉. (4.45)

Therefore the condition of Eq. (4.44) implies that the ground state |0〉 is an eigenfunction

of the operator v̂. Since v̂ corresponds to a local multiplicative one-particle potential

this can happen only if the potential is spatially constant. Hence, for all potentials which

are orthogonal to a constant in a sense of Eq. (4.40) the strict inequality in Eq. (4.42)

takes place. This means that matrix K̂[Ψ0] is negative definite and thus invertible in

the M − 1-dimensional subspace of V orthogonal to a constant vector VC . In other

words, the ground state of N -particle system on a connected lattice does belong to the

v-representability subset Ω. This result combined with the general existence theorem

4.3.1 proves the following particular version of the time-dependent v-representability

theorem.

Theorem 4.4.1 (Ground state v-representability ). Let the initial state Ψ0 for a time-

dependent many-body problem on a connected lattice correspond to a ground state of

a Hamiltonian of the form (4.38). Consider continuous positive density n(r; t) and field

average P (t) which satisfy the consistency conditions of Eqs. (4.36) and has a continuous

second time derivative. Then there is a finite interval around t0 in which n(r; t) and

P (t) can be reproduced uniquely by a time evolution of Schrödinger equation (4.21) with

some time-dependent on-site potential vi(t) and external dipole moment dext(t).

Note that 4.4.1 is valid for any Hamiltonian of the form of Eq. (4.38) as long as all the

terms in the Hamiltonian, except for the kinetic part, commute with the density operator

n̂r, and therefore, do not contribute to the K̂-matrix. An important special case is when

the initial state is the interacting many-electron ground state which is decoupled from the

photonic field, β = 0. In this case the ground state is a direct product of the electronic

ground state and photonic ground state. Another practically relevant case of α = β = 0

corresponds to the initial state in a form of the direct product of the noninteracting
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many-electron wave function (the Slater determinant) and the photonic vacuum. For all

those cases the local v-representability is guarantied by the above Theorem 4.4.1.



Chapter 5

The time-dependent

exchange-correlation functional

for a Hubbard dimer: quantifying

non-adiabatic effect

5.1 Introduction

In this chapter we exploit the possibilities of a solvable lattice model – the 2-site Hubbard

model 3.4 – to address the impact of non-locality in time in the exchange correlation

functional of TDDFT. Specifically, we study resonant Rabi oscillations, a prototypical

example of non-linear external field driven dynamics where the population of states

changes dramatically in time. We first derive the exact ground-state Hartree-exchange-

correlation (Hxc) functional for the 2-site model using the Levy-Lieb constrained search

[66, 110, 111]. This functional, when used in a TDDFT context with the instantaneous

time-dependent density as input, constitutes the exact adiabatic approximation which

can be used as a reference to quantify the role of memory effects. By carefully studying

This chapter is a part of the article ”The time-dependent exchange-correlation functional for a
Hubbard dimer: quantifying non-adiabatic effect ”, Physical Review A 88, 062512 (2013), by Johanna I.
Fuks, Mehdi Farzanehpour, Ilya V. Tokatly, Heiko Appel, Stefan Kurth, Angel Rubio.

69
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and quantifying the dynamics produced by TDDFT with the adiabatic Hxc potential

we demonstrate that it fails both quantitatively and qualitatively to describe Rabi os-

cillations. In the second part of this work we apply an analytic density-potential map

for lattice systems given in chapter 3 [103] to derive an explicit, fully non-adiabatic

exchange-correlation density functional which correctly captures all features of Rabi dy-

namics in the Hubbard dimer. This functional is one of the main results of this chapter.

We introduce the physics of the Rabi effect for the Hubbard dimer, showing how the

dipole moment and state occupations evolve with time during the course of resonant

Rabi oscillations in Section 5.2. Then in Section 5.3 we address the same problem from a

TDDFT perspective. In particular we use the exact adiabatic exchange-correlation func-

tional as a reference to quantify memory effects. In the Section 5.4 we consider the exact

interacting system in a two-level approximation which allows us to derive a new approx-

imate Hxc potential as an explicit functional of the time-dependent density. At the end

of this chapter the excellent performance of this approximation is demonstrated and

explained.

5.2 Rabi oscillations for two-site Hubbard model

We consider the dynamics of two electrons on a Hubbard dimer, that is, a two-site

interacting Hubbard model with on-site repulsion U and hopping parameter T . The

Hamiltonian of the system reads

Ĥ =− T
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+ U (n̂1↑n̂1↓ + n̂2↑n̂2↓)

+
∑
σ

(v1(t)n̂1σ + v2(t)n̂2σ) , (5.1)

where ĉ†iσ and ĉiσ are creation and annihilation operators for a spin-σ electron on site i,

respectively. The n̂iσ = ĉ†iσ ĉiσ are the operators for the spin-σ density at site i, and the

v1,2(t) are time-dependent on-site potentials. We use ~ = e = 1 throughout this work.

Energies are given in units of the hopping parameter T . As we will see, this simple

model captures most qualitative features of Rabi oscillations in interacting systems as

well as the main difficulties of describing Rabi dynamics within TDDFT.
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The many-body time-dependent Schrödinger equation,

i∂t|ψ(t)〉 = H(t)|ψ(t)〉, (5.2)

describes the evolution of the system from a given initial state |ψ0〉. Since the Hamilto-

nian (5.1) is independent of spin, the spin structure of the wave function |ψ(t)〉 is fixed

by the initial state. In the following we study the evolution from the ground state of

the Hubbard dimer and therefore it is sufficient to consider only the singlet sector of our

model.

In the absence of an external potential, v1,2 = 0, the stationary singlet eigenstates of

the Hamiltonian (5.1) take the form

|g〉 =Ng
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓ + β+

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑
))
|0〉 , (5.3a)

|e1〉 = 1/
√

2
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓
)
|0〉, (5.3b)

|e2〉 =Ne2
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓ + β−

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑
))
|0〉,

(5.3c)

Here |0〉 is the vacuum state, |g〉 is the ground state, and |e1,2〉 are two excited singlet

states. The Ng/e2 = (2 + 2β2
±)−1/2 are normalization factors and the coefficients β± are

defined as

β± = (U ±
√

16T 2 + U2)/4T. (5.4)

The energy eigenvalues corresponding to the eigenstates (5.3) are

Eg = 2Tβ− , (5.5a)

Ee1 = U , (5.5b)

Ee2 = 2Tβ+ . (5.5c)

To simplify notations, we rewrite the external potential part in Eq. (5.1) in the form

∑
σ

(v1n̂1σ + v2n̂2σ) =
∆v

2
(n̂1 − n̂2) + C(t)(n̂1 + n̂2) (5.6)

where n̂i =
∑

σ n̂iσ is the operator of the number of particles on site i, ∆v = v1 − v2
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is the difference of on-site potentials, and C(t) = (v1(t) + v2(t))/2. The last term in

Eq. (5.6) corresponds to a spatially uniform potential. This term can be trivially gauged

away and will be ignored from now on without loss of generality. Nontrivial physical

effects come only from the external potential ∆v which is coupled to the difference of

on-site densities. The quantity d̂ = n̂1 − n̂2 can be interpreted as the dipole moment of

our simplified model of a diatomic system and its expectation value d(t) = 〈ψ(t)|d̂|ψ(t)〉

uniquely determines the on-site densities n1(t) and n2(t) if the total number of particles

is fixed. In the following, in particular for TDDFT, we will use the dipole moment d(t)

as the basic “density variable”.

Since the dipole moment operator d̂ is odd under reflection (interchange of site indices),

it has nonzero matrix elements only between states of different parity. In particular, d̂

connects the ground state |g〉 of Eq. (5.3a) only to the first excited state |e1〉

dge = 〈g|d̂|e1〉 =
2√

1 + β2
+

, (5.7)

while the matrix element of d̂ between the ground state and the second excited state

vanishes, 〈g|d̂|e2〉 = 0.

Now we are ready to discuss Rabi oscillations in the Hubbard dimer. Let us consider

the evolution of the systems from its ground state |ψ(0)〉 = |g〉 under the action of a

time periodic potential

∆v(t) = 2E0 sin(ωt). (5.8)

The Rabi regime of dynamics occurs when the frequency ω of a sufficiently weak driv-

ing field approaches the frequency ω0 of the main dipole resonance. In our case this

corresponds to the frequency ω ∼ ω0 = Ee1 −Eg close to the energy difference between

ground and first excited states, and the amplitude E0 � ω0/dge.

Fig. 5.1 shows resonant dynamics of the dipole moment and state populations obtained

by the numerical propagation of Eq. (5.2) for a moderately strong interaction U = T = 1,

frequency ω = ω0 = 2.56, dge = 1.23, amplitude E0 = 0.1 and fixed electron number

N = n1 + n2 = 2. We see that the populations pg = |〈g|ψ〉|2 and pe1 = |〈e1|ψ〉|2 of

the ground and the first excited state oscillate between zero and one, while the second

excited state stays practically unpopulated, pe2 = |〈e2|ψ〉|2 ≈ 0. The dipole moment

shows fast oscillations at the driving frequency ω superimposed with slow oscillations
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of the envelope at the Rabi frequency ΩR = dgeE0. The maximal value of the dipole

moment |dmax| = dge = 1.23 is reached at 1/4 and 3/4 of the Rabi cycle when the ground

and the first excited states have equal populations of 1/2.
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d(
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 d(t)

0

1

10 20 30 40 50

p(
t)

t
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pe1
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Figure 5.1: Rabi oscillations for resonant laser ω = ω0 = 2.56 T . Upper panel: dipole
moment d(t). Lower panel: Population of ground state pg = |〈g|ψ〉|2 (solid red),first
excited state pe1 = |〈e1|ψ〉|2 (dotted orange) and second excited state pe2 = |〈e2|ψ〉|2

(dashed green). Time is given in units of 1/T , where T is the hopping parameter.

The main characteristic feature of the Rabi regime is a strong variation of the state

populations. It is this feature which makes the description of Rabi oscillations one of

the most difficult cases for TDDFT [123, 124]. In the rest of this chapter we discuss the

TDDFT approach to the Rabi dynamics for our simple two-site system.

5.3 Time-dependent Kohn-Sham equations for a Hubbard

dimer

In the present two-electron case the Kohn-Sham system corresponds to two non-interacting

particles which reproduce the time dependent dipole moment d(t) of the interacting sys-

tem. The Kohn-Sham Hamiltonian has the form of Eq. (5.1) but with no interaction

(U = 0) and the external potential ∆vs is chosen such that the correct time-dependent

density of the interacting system is reproduced.

For a singlet state both Kohn-Sham particles occupy the same one-particle Kohn-

Sham orbital, which is described by two on-site amplitudes ϕ1(t) and ϕ2(t). There-

fore the time-dependent Kohn-Sham equations reduce to a single 2 × 2 one-particle
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Schrödinger equation of the form

i∂tϕ1 = −Tϕ2 +
∆vs

2
ϕ1, (5.9a)

i∂tϕ2 = −Tϕ1 −
∆vs

2
ϕ2. (5.9b)

As our dynamics starts from the ground state, Eq. (5.9) has to be solved with the

initial condition ϕ1(0) = ϕ2(0) = 1/
√

2 which corresponds to the noninteracting Kohn-

Sham ground state. By definition the Kohn-Sham potential ∆vs(t) entering Eq. (5.9)

produces a prescribed (interacting) dipole moment. In the present case this KS potential

can be found explicitly as a functional of the density d(t) using Eq. (3.29)

∆vs[d] = − d̈+ 4T 2d√
4T 2 (4− d2)− ḋ2

. (5.10)

It is important to note that the functional ∆vs[d] is given by Eq. (5.10) only if the system

evolves from, and remains sufficiently close to, the ground state. More precisely, it is

shown in section 3.4 that the functional form of Eq. (5.10) is valid as long as the condition

| arg(ϕ1)− arg(ϕ2)| < π/2 is satisfied during the course of the evolution. If the opposite

inequality holds, the overall sign on the right hand side of Eq. (5.10) has to be changed

from − to +. Moreover, the sign changes every time the line | arg(ϕ1)− arg(ϕ2)| = π/2

is crossed. In terms of the dipole moment, crossing this line corresponds to a vanishing

expression under the square root in Eq. (5.10) 1. The above behavior can be viewed as

a manifestation of the initial state and history dependence in TDDFT [125].

The exact Kohn-Sham potential can be calculated by inserting the exact dipole moment

d(t) obtained from a numerical solution of the many-body Schrödinger equation (5.2)

into Eq. (5.10). In order to get the Hartree-exchange-correlation (Hxc ) potential we

subtract the physical external potential ∆v from the Kohn-Sham potential,

∆vHxc = ∆vs −∆v. (5.11)

The time dependence of the exact ∆vHxc which corresponds to the dipole moment d(t)

presented in Fig. 1 (i. e., to the regime of resonant Rabi oscillations, described in Sec. II)

1Since the whole right hand side in this equation is proportional to the time derivative of the denom-
inator, turning the square root into zero does not lead to a divergence because the numerator vanishes
at the same time. Also, for any physical evolution the expression under the square root always stays
nonnegative as |ḋ| for a lattice is properly bounded from above (3.21).




















































































































