Ultrafast exciton dynamics in WSe$_2$ optical waveguides

Presenter:
Aaron Sternbach
(Physics, Columbia University)

Authors:
Aaron Sternbach
(Physics, Columbia University)

Simone Latini
(Max Planck Institute for the Structure and Dynamics of Matter)

Sanghoon Chae
(Mechanical Engineering, Columbia University)

Hannes Huebener
(Max Planck Institute for the Structure and Dynamics of Matter)

Umberto De Giovannini
(Max Planck Institute for the Structure and Dynamics of Matter)

Yinming Shao
(Physics, Columbia University)

Lin Xiong
(Physics, Columbia University)

Zhiyuan Sun
(Physics, Columbia University)

Norman Shi
(Physics, Columbia University)

Peter Kissin
(Physics, University of California, San Diego)

Guangxin Ni
(Physics, Columbia University)

Daniel A Rhodes
(Mechanical Engineering, Columbia University)

Brian S Y Kim
(Mechanical Engineering, Columbia University)

Nanfang Yu
(Physics, Columbia University)

Andrew Millis
(Physics, Columbia University)

Michael M Fogler
(Physics, University of California, San Diego)
P. James Schuck
(Mechanical Engineering, Columbia University)

Michal Lipson
(Department of Electrical Engineering, Columbia University)

Xiaoyang Zhu
(Chemistry, Columbia University)

James C Hone
(Mechanical Engineering, Columbia University)

Richard Averitt
(Physics, University of California, San Diego)

Angel Rubio
(Max Planck Institute for the Structure and Dynamics of Matter)

Dmitri Basov
(Physics, Columbia University)

We investigated dynamics of excitons in a Van der Waals Semiconducting, WSe$_2$, waveguide. We monitored the electric-field profile of waveguided infrared radiation under intense femtosecond photo-excitation in real space and time. Drastic modifications of the complex wavevector of guided radiation were observed. The non-equilibrium energy momentum dispersion relationship implicates excitons in the photo-induced transformations. Unprecedented coherent dynamics of refraction, on the sub-ps timescale, reveal an optical stark-shift of the A-exciton resonance. Our study establishes that excitons enhance the performance of vdW optical modulators providing a tuning knob unavailable in conventional III-V semiconducting platforms. Our transient images and first-principles theoretical calculations establish fundamental limits of excitons in WSe$_2$-optical modulators.

*Support by Programmable Quantum Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443, the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence `Advanced Imaging of Matter` (AIM), the Flatiron Institute, a division of the Simons Foundation, and the Alexander von Humboldt foundation are acknowledged.