Molecular Dynamics and Phase Transition in One-Dimensional Crystal of C60 Encapsulated Inside Single Wall Carbon Nanotubes
ACS Nano 3, 3878 - 3883 (2008)
Molecular Dynamics and Phase Transition in One-Dimensional Crystal of C60 Encapsulated Inside Single Wall Carbon Nanotubes
One-dimensional crystals of 25% 13C-enriched C60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the 13C NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C60α, are blocked at room temperature and 68%, labeled C60β, are shown to reversly undergo molecular reorientational dynamics. Contrary to previous NMR studies, spin−lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C60β dynamics. Above the transition, the C60β exhibits continuous rotational diffusion; below the transition, C60β executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C60, suggesting a quiet smooth orientational dependence of the interaction between C60β molecules and the inner surface of the nanotubes.