Observation of fractional edge excitations in nanographene spin chains

Nature (2021)

Observation of fractional edge excitations in nanographene spin chains

Shantanu Mishra, Goncalo Catarina, Fupeng Wu, Ricardo Ortiz, David Jacob, Kristjan Eimre, Ji Ma, Carlo A Pignedoli, Xinliang Feng, Pascal Ruffieux, Joaquin Fernandez-Rossier, Roman Fasel

Fractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect, solitons in one-dimensional conducting polymers and Majorana states in topological superconductors. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains. The fundamental features of this system are gapped excitations in the bulk and, remarkably, S = 1/2 edge states at the chain termini, leading to a four-fold degenerate ground state that reflects the underlying symmetry-protected topological order. Here, we use on-surface synthesis to fabricate one-dimensional spin chains that contain the S = 1 polycyclic aromatic hydrocarbon triangulene as the building block. Using scanning tunneling microscopy and spectroscopy at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization calculations provide conclusive evidence that the spin chains are described by the S = 1 bilinear-biquadratic Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to study strongly correlated quantum spin liquid phases in purely organic materials, with the potential for the realization of measurement-based quantum computation.

Additional Information

Preprint - 18.02 MB
to be published October 14, 2021

Related Projects

Related Research Areas