Spin-Orbit Torque in Antiferromagnets

Jakub Železný1,2, Huawei Gao3, Karel Výborný1, Jan Zemen4, Jan Mašek1, Aurelien Manchon5, Jöerg Wunderlich1,6, Jairo Sinova7, Tomáš Jungwirth1,8

1) Institute of Physics ASCR,v.v.i.
2) Faculty of Mathematics and Physics, Charles University in Prague
3) Department of Physics, Texas A&M University
4) Department of Physics, Blackett Laboratory, Imperial College London
5) Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
6) Hitachi Cambridge Laboratory
7) Institut für Physik, Johannes Gutenberg Universität Mainz
8) School of Physics and Astronomy, University of Nottingham

Corresponding author: Jakub Zelezny (jakub.zelezny@gmail.com)

Antiferromagnets are common in nature and just like ferromagnets possess a long-range magnetic order. They have found little practical application so far, but were recently proposed as possible future materials for spintronics. They have some advantages over ferromagnets, in particular ultrafast magnetization dynamics and wide range of materials available, including many semiconductors. One of the key problems for application of antiferromagnets in spintronics remains manipulation of the spin-axis. While several methods exist, there is no practical, electrical method available. Here, we present calculations which show that due to relativistic effects, electrical current can trigger ultrafast switching in bulk antiferromagnets. The effect is analogous to the spin-orbit torque in ferromagnets. The switching is possible because the current creates a field opposite on the two magnetic sublattices. We discuss the symmetry of the torques, especially the necessary conditions for their existence. Electrical switching of antiferromagnet using this method was recently observed experimentally.