A local representation of the dielectric response function

Xiaochuan Ge¹, Deyu Lu¹

1) Center for Functional Nanomaterials, Brookhaven National Laboratory

Corresponding author: Deyu Lu (dlu@bnl.gov)

The screened dielectric response function (χ) is a fundamental physical quantity that captures the many-electron correlation effect, key to a range of excited state properties formulated in the GW/BSE framework. Although χ is non-local by definition, a real space partition of χ onto local structural motifs can help us gain further physical insight into, e.g., effective local screening properties. Because the bare response function, χ_0, is normally expressed in electron - hole pairs, standard localization procedures for electron wave functions cannot be directly applied. In this work, we propose a new method to decompose χ_0 and χ into contributions from local response of Wannier orbitals. We demonstrate that the localization properties of the local response can be exploited to build a local basis set for the dielectric response function, which can be used to construct a tight-binding Hamiltonian to perform dielectric band structure interpolation.

Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.