Spin transport and spin-caloric effects in (Cr,Zn)Te half-metallic nanostructures: Effect of spin disorder at elevated temperatures from first principles

Roman Kováčik¹, Phivos Mavropoulos¹, Stefan Blügel¹

¹) Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

Corresponding author: Roman Kovacik (r.kovacik@fz-juelich.de)

An important contribution to the thermoelectric and spin-caloric transport properties in magnetic materials at elevated temperatures is the spin-disordered state formation due to the local moment fluctuations. This effect has not been largely investigated so far. Motivated by the miniaturization of spintronics devices and a possible enhancement of thermoelectric effects due to quantum confinement, we focus on CrTe half-metallic ferromagnetic nanostructures (thin layers, nanowires) embedded in ZnTe matrix and contacted by Ag leads. The electronic structure is calculated within the full-potential Korringa-Kohn-Rostoker Green function framework. The temperature induced spin disorder is simulated by the Monte-Carlo methodology and the Landauer-Büttiker approach is used to evaluate the transport properties. The thermoelectric and spin-caloric coefficients can be reduced, enhanced or even change sign due to the spin-disorder depending on temperature and the particular nanostructure geometry. Our calculations show these effects for the first time [1,2]. Furthermore, we show that substitutional impurities in CrTe nanowires could considerably enhance the thermoelectric figure of merit [2]. Support from DFG (SPP1538) is gratefully acknowledged.