Theoretical description of angular momentum resolved photo emission on the basis of the one-step model - recent developments

Jan Minar$^{1,2}$

1) Ludwig-Maximilians-Universität München, Germany
2) University of West Bohemia, Pilsen, Czech Rep. New Technologies - Research Center

Corresponding author: Jan Minar (jmminar@gmail.com)

Various technical developments enlarged the potential of ARPES tremendously during the last one or two decades. In particular improved momentum, energy and spin resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces [1,2]. These experimental developments need to be closely followed by corresponding theoretical description beyond simple interpretations like e.g. spectral function. Here, we present a generalization of the state of the art description of the photoemission process, the so called one-step model that describes excitation, transport to the surface and escape into the vacuum in a coherent way. Within this approach we account for correlation effects by LSDA+DMFT, disorder by means of CPA and lattice vibrations by alloy analogy model. All these developments will be demonstrated by various recent examples. In the last part of my talk I will show novel description of the ultrafast pump-probe experiments by means of multiple scattering Keldysh formalism [3].