Scanning Tunneling Microscopy Evidence for the Dissociation of Carbon Monoxide on Ruthenium Steps

Journal Of Physical Chemistry C 116, 14350 - 14359 (2012)

Scanning Tunneling Microscopy Evidence for the Dissociation of Carbon Monoxide on Ruthenium Steps

Yann Tison, Kenneth Nielsen, Duncan J. Mowbray, Lone Bech, Christian Holse, Federico Calle-Vallejo, Kirsten Andersen, Jens J. Mortensen, Karsten W. Jacobsen,, Jane H. Nielsen

In heterogeneous catalysis, identifying the active site for key reaction steps is an important contribution for the optimization of industrial synthesis. The structure sensitivity of CO dissociation on a metal catalyst, which is the rate-limiting step for the methanation and the Fischer-Tropsch processes under certain conditions, has been debated for years. Here, scanning tunnelling microscopy (STM) and density functional theory (DFT) are used in order to clarify the role of monoatomic steps in the splitting of CO on a stepped Ru(0 1 54) crystal, which displays alternating steps with either 4-fold or 3-fold symmetry. After CO doses at elevated temperatures, the STM images reveal step decorations characteristic of atomic oxygen resulting from CO dissociation on every second step. The comparison of the STM images with the results of DFT calculations shows that the step decoration occurs on the steps displaying the 4-fold symmetry. We conclude that the active sites for CO dissociation on ruthenium are located on the 4-fold symmetry monoatomic steps.

Additional Information

Download
Preprint - 4.23 MB
Doi
http://dx.doi.org/10.1021/jp302424g

Related Research Areas