Engineering quantum materials with chiral optical cavities
Nature Materials 20, 438 - 442 (2021)
Engineering quantum materials with chiral optical cavities
Strong light–matter coupling in quantum cavities provides a pathway to break fundamental materials symmetries, like time-reversal symmetry in chiral cavities. This Comment discusses the potential to realize non-equilibrium states of matter that have so far been only accessible in ultrafast and ultrastrong laser-driven materials.
Additional Information
- Download
- Preprint - 1.97 MB
- Notes
- We are grateful to S. A. Sato, D. Shin, M. A. Sentef, E. Ronca, S. Latini, D. Basov, J.-M. Triscone, A. Pasupathy, E. Demler, A. Cavalleri, A. Imamoglu, J. Flick, A. Georges and A. Millis for the fruitful discussion. We acknowledge financial support from the European Research Council (ERC-2015-AdG-694097), SNF project 200020_192330 and the Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056-390715994. The Flatiron Institute is a division of the Simons Foundation. Support by the Max Planck — New York City Center for Non-Equilibrium Quantum Phenomena is acknowledged
Related Projects
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York
- Cluster of Excellence
- MPSD-Max-Planck Hamburg