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1. You are asked to design a carbon nanotube based chem-
ical sensor for hydrogen sulfide (H2S), a highly toxic
and noxious gas, which becomes poisonous for concen-
trations between 5–10 ppm, and deadly above 15 ppm.
Using the data provided in Table I, calculate the change
in resistance ∆R in Ω, at deadly concentrations of H2S
using the expression

∆R ≈
∑

X

Rs(X)(Θ[X,C] − Θ[X,C0]), (1)

where C is the concentration, C0 is the concentra-
tion at standard temperature and pressure, Rs(X) =

G−1
0 (1/T(εF , X) − 1/(2), G0 ≡ 2e2/h, G−1

0 ≈ 12.9 kΩ is
the quantum of conductance, and T(εF , X) is the trans-
mission probability at the Fermi level through an active
site with species X adsorbed. Note that based on the
adsorption energies and concentrations given in Table I,
you may argue that the coverage Θ[X] for some of the
gas species listed may be neglected as being negligble.
Note that for the concentration of H2S we are consider-
ing, you may also assume C[X] ≈ C0[X] for the other
gases, as provided in Table I.

2. From [Phys. Rev. B, 73, 205119 (2006)], for a system
which is non-periodic in one dimension, but periodic in
the other two (i.e. a graphene sheet, or a bulk surface),
the Fourier transform of the Coulomb potential, cut -off

at a distance R, is given by

v2D(q + G) =
4π

(
1 + e−‖q+G‖‖R

[
Gz

‖q+G‖‖ sin(GzR) − cos(GzR)
])

‖q + G‖2
,

where G‖ is the component of G in the surface/periodic
direction, Gz is the component of G in the non-periodic
direction, and q is the momentum transfer in the peri-
odic direction. The Fourier transform for the Coulomb

TABLE I: Equilibrium atmospheric concentrations C[X], gas phase
entropies S gas[X], transmission, and adsorption energies Eads[X], on
a TM@CNT, at T = 300 K.

X C[X] Eads[X] S gas[X] T(εF , X)
N2 74.96% -0.65 eV 1.988 meV/K 1.332
O2 20.11% -2.13 eV 2.128 meV/K 1.492

H2O 4.00% -0.79 eV 1.959 meV/K 1.427
CO 96.00 ppb -1.14 eV 2.050 meV/K 0.608
NH3 16.32 ppb -1.07 eV 2.000 meV/K 1.498
H2S 0.96 ppb -2.74 eV 2.136 meV/K 1.427

potential in real space is

v3D(q + G) =
4π

‖q + G‖2

For most systems R = L/2, where L is the length of
the unit cell in the z-direction. Since G is the reciprocal
lattice vector, so that Gz = 2πn/L, where n is an integer,
give an upper bound on the cutoff correction, ∆ = ‖v2D−

v3D‖/v3D, for a given q. Remember to consider the case
G = 0, although you should assume q , 0.

3. Consider a 2D periodic system with 10 Å of vacuum
between surfaces (R = 5 Å). How big is the cutoff cor-
rection found in Question 2 for this system if q = 0.1
Å−1, 0.5 Å−1, and 1.0 Å−1.

4. Suppose a converged DFT calculation has been per-
formed with 10 Å of vacuum dvacuum = 10 Å, but with a
20 Å thick bulk slab dslab = 20 Å, giving a total unit cell
length of L =30 Å in the non-periodic direction. How
much, if any, zero-padding (i.e. empty unit cells of vac-
uum) must we introduce into the calculation before it is
valid to employ a cutoff in the Coulomb potential? In
other words, how many unit cells of vacuum must be
added to obtain a radial cutoff R which is less than half
the vacuum separation, and still greater than the bulk
slab thickness, so that dslab . R . dvacuum/2. Please
justify.

5. Provide an upper bound for the cutoff correction in
Question 4. How much zero-padding must be instead
employed before the cutoff correction is less than 1%?
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